Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 2, 11 - 22, 01.03.2016

Öz

Kaynakça

  • J. Klein, Escapes Variationnels Et M´ecanique, Ann. Inst. Fourier, Grenoble, 12, (1962).
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, Elsevier Sc. Pub. Com. Inc., Amsterdam, (1989); 263-397.
  • R. Abraham and J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001); 483-542.
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-K¨ahler–Weyl Manifolds, IJGMMP, Vol. 10, No. 5, (2013); 1-8.
  • Z. Kasap, Weyl-Euler-Lagrange Equations of Motion on Flat Manifold, Advances in Mathematical Physics, (2015), 1-11.
  • A.G. Walker, Canonical Form for A Rimannian Space with A Paralel Field of Null Planes, Quart. J. Math. Oxford, Vol. 1, No. 2, (1950); 69-79.
  • A. Salimov, M. Iscan and K. Akbulut, Notes on Para-Norden–Walker 4-Manifolds, IJGMMP, Vol. 07, No. 08, (2010), 1331-1347.
  • Y. Matsushita, Walker 4-Manifolds with Proper Almost Complex Structures, JGP, Vol. 55, (2005); 385-398.
  • E. Garcia-Rio, S. Haze, N. Katayama and Y. Matsushita, Symplectic, Hermitian and K¨ahler Structures on Walker 4-Manifolds, J. Geom., 90, (2008); 56–65.
  • W. Batat, G. Calvaruso and B. De Leo, On the Geometry of Four-DimensionalWalker Manifolds, Rendiconti di Matematica, Serie VII, Vol. 29, (2008); 163–173.
  • M. Nadjafikhah and M. Jafari, Some General New Einstein Walker Manifolds, arXiv:1206.3730v1, (2012); 1-14.
  • A. A. Salimov and M. Iscan, On Norden-Walker 4-manifolds, Note Di Matematica, Note Mat., 30, (2010); 111–128.
  • M. Brozos-Vazquez, E. Garcia–Rio, P. Gilkey and R. Vazquez-Lorenzo, Tsankov–Videv Theory forWalker Manıfolds of Signature (2,2), SIGMA 3 (2007); 1-13.
  • J. Davidova, J.C. Diaz-Ramosd, E. Garcia-Riob, Y. Matsushitac, O. Muskarova and R. Vazquez-Lorenzob, Almost K¨ahler Walker 4-Manifolds, JGP, 57, (2007); 1075–1088.
  • M. Tekkoyun, A Survey on Geometric Dynamics of 4-Walker Manifold, JMP, 2, (2011); 1318-1323.
  • P.R. Law, A Spinor Approach to Walker Geometry, arXiv:math/0612804v4, (2011); 1-10.
  • Y. Matsushita, Four-Dimensional Walker Metrics and Symplectic Structures, Journal of Geometry and Physics, Vol. 52, (2004); 89-99.
  • D. McDu and D. Salamon, J-holomorphic Curves and Quantum Cohomology, (1995).
  • https://en.wikipedia.org/wiki/Conformal geometry.
  • W.O. Straub, Simple Derivation of the Weyl Conformal Tensor, Pasadena, California, 2006.
  • G.B. Folland, Weyl Manifolds, J. Differential Geometry, 4, (1970), 145-153.
  • L. Kadosh, Topics in Weyl Geometry, Dissertationial, University of California, (1996):
  • P. Gilkey, S. Nikˇcevi´c and U. Simon, Geometric Realizations, Curvature Decompositions, and Weyl Manifolds. JGP, 61, (2011),270–275.
  • http://en.wikipedia.org/wiki/Conformally flat manifold.
  • P. Gilkey, S. Nikˇcevi´c, K¨ahler-Weyl manifolds of Dimension 4, (2010); 1-11.
  • https://en.wikipedia.org/wiki/Weyl tensor.
  • https://en.wikipedia.org/wiki/Weyl transformation.
  • M. Brozos-Vazquez, S. Nikcevic, P. Gilkey, E. Garcia-Rio and R. Vazquez-Lorenzo, The Geometry of Walker Manifolds, Vol. 2, No. 1, (2009), 1-179.
  • H. Weyl, Space-Time-Matter, Dover Publ. (1952):
  • B. Thid´e, Electromagnetic Field Theory, http://www.physics.irfu.se/CED/Book/EMFT Book.pdf, (2012).

Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds

Yıl 2016, Cilt: 4 Sayı: 2, 11 - 22, 01.03.2016

Öz

The main purpose of the present paper is to study almost complex structures conformalWeyl-Euler-Lagrangian equations on 4-imensionalWalker manifolds for (conservative) dynamical systems. In this study, routes of objects moving in space will be modeled mathematically on 4-imensional Walker manifolds that these are time-dependent partial differential equations. A Walker n-manifold is a semi-Riemannian n-manifold, which admits a field of parallel null r-planes, with r <= n/2 . It is well-known that semi-Riemannian geometry has an important tool to describe spacetime events. Therefore, solutions of some structures about 4-Walker manifold can be used to explain spacetime singularities. Then, here we present complex analogues of Lagrangian mechanical systems on 4-Walker manifold. Also, the geometrical-physical results related to complex mechanical systems are also discussed for conformal Weyl-Euler-Lagrangian equations for (conservative) dynamical systems and solution of the motion equations using Maple Algebra software will be made.

Kaynakça

  • J. Klein, Escapes Variationnels Et M´ecanique, Ann. Inst. Fourier, Grenoble, 12, (1962).
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, Elsevier Sc. Pub. Com. Inc., Amsterdam, (1989); 263-397.
  • R. Abraham and J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001); 483-542.
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-K¨ahler–Weyl Manifolds, IJGMMP, Vol. 10, No. 5, (2013); 1-8.
  • Z. Kasap, Weyl-Euler-Lagrange Equations of Motion on Flat Manifold, Advances in Mathematical Physics, (2015), 1-11.
  • A.G. Walker, Canonical Form for A Rimannian Space with A Paralel Field of Null Planes, Quart. J. Math. Oxford, Vol. 1, No. 2, (1950); 69-79.
  • A. Salimov, M. Iscan and K. Akbulut, Notes on Para-Norden–Walker 4-Manifolds, IJGMMP, Vol. 07, No. 08, (2010), 1331-1347.
  • Y. Matsushita, Walker 4-Manifolds with Proper Almost Complex Structures, JGP, Vol. 55, (2005); 385-398.
  • E. Garcia-Rio, S. Haze, N. Katayama and Y. Matsushita, Symplectic, Hermitian and K¨ahler Structures on Walker 4-Manifolds, J. Geom., 90, (2008); 56–65.
  • W. Batat, G. Calvaruso and B. De Leo, On the Geometry of Four-DimensionalWalker Manifolds, Rendiconti di Matematica, Serie VII, Vol. 29, (2008); 163–173.
  • M. Nadjafikhah and M. Jafari, Some General New Einstein Walker Manifolds, arXiv:1206.3730v1, (2012); 1-14.
  • A. A. Salimov and M. Iscan, On Norden-Walker 4-manifolds, Note Di Matematica, Note Mat., 30, (2010); 111–128.
  • M. Brozos-Vazquez, E. Garcia–Rio, P. Gilkey and R. Vazquez-Lorenzo, Tsankov–Videv Theory forWalker Manıfolds of Signature (2,2), SIGMA 3 (2007); 1-13.
  • J. Davidova, J.C. Diaz-Ramosd, E. Garcia-Riob, Y. Matsushitac, O. Muskarova and R. Vazquez-Lorenzob, Almost K¨ahler Walker 4-Manifolds, JGP, 57, (2007); 1075–1088.
  • M. Tekkoyun, A Survey on Geometric Dynamics of 4-Walker Manifold, JMP, 2, (2011); 1318-1323.
  • P.R. Law, A Spinor Approach to Walker Geometry, arXiv:math/0612804v4, (2011); 1-10.
  • Y. Matsushita, Four-Dimensional Walker Metrics and Symplectic Structures, Journal of Geometry and Physics, Vol. 52, (2004); 89-99.
  • D. McDu and D. Salamon, J-holomorphic Curves and Quantum Cohomology, (1995).
  • https://en.wikipedia.org/wiki/Conformal geometry.
  • W.O. Straub, Simple Derivation of the Weyl Conformal Tensor, Pasadena, California, 2006.
  • G.B. Folland, Weyl Manifolds, J. Differential Geometry, 4, (1970), 145-153.
  • L. Kadosh, Topics in Weyl Geometry, Dissertationial, University of California, (1996):
  • P. Gilkey, S. Nikˇcevi´c and U. Simon, Geometric Realizations, Curvature Decompositions, and Weyl Manifolds. JGP, 61, (2011),270–275.
  • http://en.wikipedia.org/wiki/Conformally flat manifold.
  • P. Gilkey, S. Nikˇcevi´c, K¨ahler-Weyl manifolds of Dimension 4, (2010); 1-11.
  • https://en.wikipedia.org/wiki/Weyl tensor.
  • https://en.wikipedia.org/wiki/Weyl transformation.
  • M. Brozos-Vazquez, S. Nikcevic, P. Gilkey, E. Garcia-Rio and R. Vazquez-Lorenzo, The Geometry of Walker Manifolds, Vol. 2, No. 1, (2009), 1-179.
  • H. Weyl, Space-Time-Matter, Dover Publ. (1952):
  • B. Thid´e, Electromagnetic Field Theory, http://www.physics.irfu.se/CED/Book/EMFT Book.pdf, (2012).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Zeki Kasap

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Kasap, Z. (2016). Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds. New Trends in Mathematical Sciences, 4(2), 11-22.
AMA Kasap Z. Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds. New Trends in Mathematical Sciences. Mart 2016;4(2):11-22.
Chicago Kasap, Zeki. “Conformal Weyl-Euler-Lagrangian Equations on 4-Walker Manifolds”. New Trends in Mathematical Sciences 4, sy. 2 (Mart 2016): 11-22.
EndNote Kasap Z (01 Mart 2016) Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds. New Trends in Mathematical Sciences 4 2 11–22.
IEEE Z. Kasap, “Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds”, New Trends in Mathematical Sciences, c. 4, sy. 2, ss. 11–22, 2016.
ISNAD Kasap, Zeki. “Conformal Weyl-Euler-Lagrangian Equations on 4-Walker Manifolds”. New Trends in Mathematical Sciences 4/2 (Mart 2016), 11-22.
JAMA Kasap Z. Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds. New Trends in Mathematical Sciences. 2016;4:11–22.
MLA Kasap, Zeki. “Conformal Weyl-Euler-Lagrangian Equations on 4-Walker Manifolds”. New Trends in Mathematical Sciences, c. 4, sy. 2, 2016, ss. 11-22.
Vancouver Kasap Z. Conformal Weyl-Euler-Lagrangian equations on 4-Walker manifolds. New Trends in Mathematical Sciences. 2016;4(2):11-22.