Araştırma Makalesi
BibTex RIS Kaynak Göster

The proof of theorem which characterizes a slant helix

Yıl 2016, Cilt: 4 Sayı: 2, 56 - 60, 01.03.2016

Öz

Firstly, the axis of a slant helix is found. Secondly, the theorem which characterizes a slant helix is proved in detail. The importance of this theorem is stemed from that it has been led to doing many papers about slant helices.


Kaynakça

  • S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
  • L. Kula and Y. Yayli , On slant helix and its spherical indicatrix, Applied Mathematics and Computation 169 (1), 600-607, 2005.
  • L. Kula, N. Ekmekci, Y. Yayli , K. Ilarslan, Characterizations of slant helices in Euclidean 3-space, Turk. J. Math. 34, 261–273, 2010.
  • A.T. Ali and M. Turgut, Some characterizations of slant helices in the Euclidean space En, Hacettepe Journal of Mathematics and Statistics 39 (3), 327-336, 2010.
  • A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365, 559–569, 2010.
  • A.T. Ali and R. Lopez, Slant helices in Minkowski space E31, J. Korean Math. Soc. 48 (1), 159-167, 2011.
  • F. Dogan, Isophote curves on timelike surfaces in Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (S.N.), DOI:10.2478/aicu-2014-0020.
  • F. Dogan and Y.Yayli , Isophote curves on spacelike surfaces in Lorentz-Minkowski space E31. arXiv:1203.4388.
  • F. Dogan and Y.Yayli , On isophote curves and their characterizations, Turk. J. Math., 39 (5), 650-664, 2015.
Yıl 2016, Cilt: 4 Sayı: 2, 56 - 60, 01.03.2016

Öz

Kaynakça

  • S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
  • L. Kula and Y. Yayli , On slant helix and its spherical indicatrix, Applied Mathematics and Computation 169 (1), 600-607, 2005.
  • L. Kula, N. Ekmekci, Y. Yayli , K. Ilarslan, Characterizations of slant helices in Euclidean 3-space, Turk. J. Math. 34, 261–273, 2010.
  • A.T. Ali and M. Turgut, Some characterizations of slant helices in the Euclidean space En, Hacettepe Journal of Mathematics and Statistics 39 (3), 327-336, 2010.
  • A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365, 559–569, 2010.
  • A.T. Ali and R. Lopez, Slant helices in Minkowski space E31, J. Korean Math. Soc. 48 (1), 159-167, 2011.
  • F. Dogan, Isophote curves on timelike surfaces in Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (S.N.), DOI:10.2478/aicu-2014-0020.
  • F. Dogan and Y.Yayli , Isophote curves on spacelike surfaces in Lorentz-Minkowski space E31. arXiv:1203.4388.
  • F. Dogan and Y.Yayli , On isophote curves and their characterizations, Turk. J. Math., 39 (5), 650-664, 2015.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Fatih Dogan Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Dogan, F. (2016). The proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences, 4(2), 56-60.
AMA Dogan F. The proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences. Mart 2016;4(2):56-60.
Chicago Dogan, Fatih. “The Proof of Theorem Which Characterizes a Slant Helix”. New Trends in Mathematical Sciences 4, sy. 2 (Mart 2016): 56-60.
EndNote Dogan F (01 Mart 2016) The proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences 4 2 56–60.
IEEE F. Dogan, “The proof of theorem which characterizes a slant helix”, New Trends in Mathematical Sciences, c. 4, sy. 2, ss. 56–60, 2016.
ISNAD Dogan, Fatih. “The Proof of Theorem Which Characterizes a Slant Helix”. New Trends in Mathematical Sciences 4/2 (Mart 2016), 56-60.
JAMA Dogan F. The proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences. 2016;4:56–60.
MLA Dogan, Fatih. “The Proof of Theorem Which Characterizes a Slant Helix”. New Trends in Mathematical Sciences, c. 4, sy. 2, 2016, ss. 56-60.
Vancouver Dogan F. The proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences. 2016;4(2):56-60.