Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 2, 72 - 89, 01.03.2016

Öz

Kaynakça

  • J. Ahsan, fully Idempotent Semirings, Proc. Japan Acad. 69, Ser. A (1993)185-188
  • J. Ahsan, Semirings Characterized by Their Fuzzy Ideals, J. Fuzzy Math. 6 (1998), 181-192.
  • J. Ahsan, K. Saifullah, M. F. Khan, Fuzzy semirings, Fuzzy Sets and Systems 60 (1993) 309-320
  • K. Atanassov; Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • S.K. Bhakat, P. Das, (22 _q)-fuzzy subgroups, Fuzzy Sets and Systems 80 (1996) 359-368. D. Coker, M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (2) (1995) 79-84.
  • W.A. Dudek, Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft Comput. 12 (2008) 359-364.
  • W.A. Dudek, M. Shabir, I. Ali, (ab )-fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2) (2009) 310-321.
  • J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ. , 1999
  • U. Hebisch, H.J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.
  • A. Hussain, M. Shabir, Soft Finite State Machine, Journal of Intelligent and Fuzzy System, 2015, ( Accepted).
  • A. Hussain, M. Shabir, Cubic Finite State Machine, Annals of Fuzzy Mathematics and Informatics, 2015, ( Accepted).
  • Y.B. Jun, Generalization of (22 _q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009) 1383-1390.
  • Y.B. Jun, On (ϕ y)-intuitionistic fuzzy fubgroups, KYUNGPOOK Math. J. 45 (2005) 87-94.
  • Y.B. Jun, W.A. Dudek, M. Shabir, Generalizations of (ab )-fuzzy ideals of hemirings.
  • A. Khan, M. Shabir, (ab )-fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 30 (2009) 30-39.
  • A. Khan, Y.B Jun, N.H. Sarmin, F.M. Khan, Ordered semigroups characterized by(22 _qk)-fuzzy generalized bi-ideals, Neural Comput & Applic (2011).
  • V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee - 247 667, Uttarakhand, India.
  • J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages, Theory and Applications, in: Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, 2002.
  • V. Murali, Fuzzy points of equivalent fuzzy subsets, Information Science 158 (2004) 277-288.
  • P.M. Pu, Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore–Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
  • M. Shabir, Y.B. Jun, Y. Nawaz, Characterizations of regular semigroups by (ab )-fuzzy ideals, Comput. Math. Appl. 59 (2010) 161-175.
  • M. Shabir, Y.B. Jun, Y. Nawaz, Semigroups characterized by (2 2 _qk)-fuzzy ideals, Comput. Math. Appl. 60 (2010) 1473-1493.
  • H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920.
  • L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.

Generalized intuitionistic fuzzy ideals of hemirings

Yıl 2016, Cilt: 4 Sayı: 2, 72 - 89, 01.03.2016

Öz

In this paper we generalize the concept of quasi-coincident of an intuitionistic fuzzy point with an intuitionistic fuzzy set and define (2; 2 _qk)-intuitionistic fuzzy ideals of hemirings and characterize different classes of hemirings by the properties of these ideals.


Kaynakça

  • J. Ahsan, fully Idempotent Semirings, Proc. Japan Acad. 69, Ser. A (1993)185-188
  • J. Ahsan, Semirings Characterized by Their Fuzzy Ideals, J. Fuzzy Math. 6 (1998), 181-192.
  • J. Ahsan, K. Saifullah, M. F. Khan, Fuzzy semirings, Fuzzy Sets and Systems 60 (1993) 309-320
  • K. Atanassov; Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • S.K. Bhakat, P. Das, (22 _q)-fuzzy subgroups, Fuzzy Sets and Systems 80 (1996) 359-368. D. Coker, M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (2) (1995) 79-84.
  • W.A. Dudek, Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft Comput. 12 (2008) 359-364.
  • W.A. Dudek, M. Shabir, I. Ali, (ab )-fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2) (2009) 310-321.
  • J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ. , 1999
  • U. Hebisch, H.J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.
  • A. Hussain, M. Shabir, Soft Finite State Machine, Journal of Intelligent and Fuzzy System, 2015, ( Accepted).
  • A. Hussain, M. Shabir, Cubic Finite State Machine, Annals of Fuzzy Mathematics and Informatics, 2015, ( Accepted).
  • Y.B. Jun, Generalization of (22 _q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009) 1383-1390.
  • Y.B. Jun, On (ϕ y)-intuitionistic fuzzy fubgroups, KYUNGPOOK Math. J. 45 (2005) 87-94.
  • Y.B. Jun, W.A. Dudek, M. Shabir, Generalizations of (ab )-fuzzy ideals of hemirings.
  • A. Khan, M. Shabir, (ab )-fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 30 (2009) 30-39.
  • A. Khan, Y.B Jun, N.H. Sarmin, F.M. Khan, Ordered semigroups characterized by(22 _qk)-fuzzy generalized bi-ideals, Neural Comput & Applic (2011).
  • V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee - 247 667, Uttarakhand, India.
  • J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages, Theory and Applications, in: Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, 2002.
  • V. Murali, Fuzzy points of equivalent fuzzy subsets, Information Science 158 (2004) 277-288.
  • P.M. Pu, Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore–Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
  • M. Shabir, Y.B. Jun, Y. Nawaz, Characterizations of regular semigroups by (ab )-fuzzy ideals, Comput. Math. Appl. 59 (2010) 161-175.
  • M. Shabir, Y.B. Jun, Y. Nawaz, Semigroups characterized by (2 2 _qk)-fuzzy ideals, Comput. Math. Appl. 60 (2010) 1473-1493.
  • H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920.
  • L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Asim Hussain Bu kişi benim

Muhammad Shabir Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Hussain, A., & Shabir, M. (2016). Generalized intuitionistic fuzzy ideals of hemirings. New Trends in Mathematical Sciences, 4(2), 72-89.
AMA Hussain A, Shabir M. Generalized intuitionistic fuzzy ideals of hemirings. New Trends in Mathematical Sciences. Mart 2016;4(2):72-89.
Chicago Hussain, Asim, ve Muhammad Shabir. “Generalized Intuitionistic Fuzzy Ideals of Hemirings”. New Trends in Mathematical Sciences 4, sy. 2 (Mart 2016): 72-89.
EndNote Hussain A, Shabir M (01 Mart 2016) Generalized intuitionistic fuzzy ideals of hemirings. New Trends in Mathematical Sciences 4 2 72–89.
IEEE A. Hussain ve M. Shabir, “Generalized intuitionistic fuzzy ideals of hemirings”, New Trends in Mathematical Sciences, c. 4, sy. 2, ss. 72–89, 2016.
ISNAD Hussain, Asim - Shabir, Muhammad. “Generalized Intuitionistic Fuzzy Ideals of Hemirings”. New Trends in Mathematical Sciences 4/2 (Mart 2016), 72-89.
JAMA Hussain A, Shabir M. Generalized intuitionistic fuzzy ideals of hemirings. New Trends in Mathematical Sciences. 2016;4:72–89.
MLA Hussain, Asim ve Muhammad Shabir. “Generalized Intuitionistic Fuzzy Ideals of Hemirings”. New Trends in Mathematical Sciences, c. 4, sy. 2, 2016, ss. 72-89.
Vancouver Hussain A, Shabir M. Generalized intuitionistic fuzzy ideals of hemirings. New Trends in Mathematical Sciences. 2016;4(2):72-89.