Araştırma Makalesi
BibTex RIS Kaynak Göster

Identifying an unknown time dependent coefficient for quasilinear parabolic equations

Yıl 2016, Cilt: 4 Sayı: 3, 116 - 128, 30.09.2016

Öz



This article deals with the mathematical analysis of
the inverse problem of identifying the unknown time-dependent coefficient in
the quasilinear parabolic equation with the nonlocal boundary and integral
overdetermination conditions. The existence, uniqueness and continuously
dependence upon the data of the solution are proved by iteration method in
addition to the numerical solution of this problem is considered with an
example.




Kaynakça

  • Kanca F.,Baglan I., Continuous dependence on data for a solution of the quasilinear parabolic equation with a periodic boundary condition, Boundary Value Problems, 28, 2013.
  • Sakınc I., Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition, Hacettepe Journal of Mathematics and Statistics, 2010;39(2):183-189.
  • A. M. Nakhushev, Equations of Mathematical Biology, Moscow, 1995 (in Russian).
  • Ionkin NI. Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition. Differential Equations.1977; 13: 204-211
  • Pourgholia R, Rostamiana M and Emamjome M., A numerical method for solving a nonlinear inverse parabolic problem. Inverse Problems in Science and Engineering, 2010, 18(8):1151-1164.
  • Cannon J,R., Lin Y., Determination of parameter p(t) in Hölder classes for some semilinear parabolic equations. Inverse Problems, 1988, 4:595-606.
  • Ozbilge E., Demir A., Inverse problem for a time-fractional parabolic equation, Journal of Inequalities and Applications, 2015, 81, (Mar 2015).
Yıl 2016, Cilt: 4 Sayı: 3, 116 - 128, 30.09.2016

Öz

Kaynakça

  • Kanca F.,Baglan I., Continuous dependence on data for a solution of the quasilinear parabolic equation with a periodic boundary condition, Boundary Value Problems, 28, 2013.
  • Sakınc I., Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition, Hacettepe Journal of Mathematics and Statistics, 2010;39(2):183-189.
  • A. M. Nakhushev, Equations of Mathematical Biology, Moscow, 1995 (in Russian).
  • Ionkin NI. Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition. Differential Equations.1977; 13: 204-211
  • Pourgholia R, Rostamiana M and Emamjome M., A numerical method for solving a nonlinear inverse parabolic problem. Inverse Problems in Science and Engineering, 2010, 18(8):1151-1164.
  • Cannon J,R., Lin Y., Determination of parameter p(t) in Hölder classes for some semilinear parabolic equations. Inverse Problems, 1988, 4:595-606.
  • Ozbilge E., Demir A., Inverse problem for a time-fractional parabolic equation, Journal of Inequalities and Applications, 2015, 81, (Mar 2015).
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Fatma Kanca

İrem Baglan Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 3

Kaynak Göster

APA Kanca, F., & Baglan, İ. (2016). Identifying an unknown time dependent coefficient for quasilinear parabolic equations. New Trends in Mathematical Sciences, 4(3), 116-128.
AMA Kanca F, Baglan İ. Identifying an unknown time dependent coefficient for quasilinear parabolic equations. New Trends in Mathematical Sciences. Eylül 2016;4(3):116-128.
Chicago Kanca, Fatma, ve İrem Baglan. “Identifying an Unknown Time Dependent Coefficient for Quasilinear Parabolic Equations”. New Trends in Mathematical Sciences 4, sy. 3 (Eylül 2016): 116-28.
EndNote Kanca F, Baglan İ (01 Eylül 2016) Identifying an unknown time dependent coefficient for quasilinear parabolic equations. New Trends in Mathematical Sciences 4 3 116–128.
IEEE F. Kanca ve İ. Baglan, “Identifying an unknown time dependent coefficient for quasilinear parabolic equations”, New Trends in Mathematical Sciences, c. 4, sy. 3, ss. 116–128, 2016.
ISNAD Kanca, Fatma - Baglan, İrem. “Identifying an Unknown Time Dependent Coefficient for Quasilinear Parabolic Equations”. New Trends in Mathematical Sciences 4/3 (Eylül 2016), 116-128.
JAMA Kanca F, Baglan İ. Identifying an unknown time dependent coefficient for quasilinear parabolic equations. New Trends in Mathematical Sciences. 2016;4:116–128.
MLA Kanca, Fatma ve İrem Baglan. “Identifying an Unknown Time Dependent Coefficient for Quasilinear Parabolic Equations”. New Trends in Mathematical Sciences, c. 4, sy. 3, 2016, ss. 116-28.
Vancouver Kanca F, Baglan İ. Identifying an unknown time dependent coefficient for quasilinear parabolic equations. New Trends in Mathematical Sciences. 2016;4(3):116-28.