Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 3, 277 - 289, 30.09.2016

Öz

Kaynakça

  • W. M. Boothby and H. C. Wang, On concact manifolds, Ann. of Math.(2). vol.68 , pp. 721-734, (1958).
  • W. M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure. Math.III, Amer. Math. Soc., pp.144-154, (1961).
  • W. M. Boothby, A note on homogeneous complex contact manifolds, Proc.Amer. Math. Soc., 13, 276-280, (1962).
  • D. E. Blair, Riemannian Geometry of contactand symplectic Manifold. Brikhauser, (2002).
  • Y. Hatakeyama, Y. Ogawa, S. Tanno, Some properties of manifolds with contact metric structures, Tohoku Math. J. , 15, 42-48.
  • S. Ishihara and M. Konishi, Real contact 3-structure and complex contact structure, Southeast Asian Bulletin of Math, 3, 151-161, (1979).
  • S. Ishihara and M. Konishi, Complex almost contact manifolds, Kodai Math. J., 3, 385-396, (1980).
  • B. Korkmaz,Curvature and normality of complex contact manifolds, PhD Thesis, Michigan State University East Lansing, MI, USA © (1997).
  • B. Korkmaz, A curvature property of complex contact metric structure, Kyungpook Math. J. 38, 473-488, (1998).
  • B. Korkmaz, Normality of complex contact manifolds, Rocky Mountain J. Math., 30, 1343-1380, (2000).
  • Kobayashi, S., Principal fibre bundles with the1-dimensional toroidal group, Tohoku Math. J. 8, 29-45, (1956).
  • S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc.,10, 164-167, (1963).
  • S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. 15, 121-139, (1963).
  • J.W. Gray, Some global properties of contact structures Ann. of. Math. Soc. vol.42, pp.257, (1967).
  • S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) vol.12, pp 459-476, (1960).
  • J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.Math. and Mech., 14, 1033-1047, (1965).

On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds

Yıl 2016, Cilt: 4 Sayı: 3, 277 - 289, 30.09.2016

Öz



In this article we studied anti-invariant submanifolds
of almost complex contact metric manifolds. We found a relation between
Nijenhuis tensor fields of anti-invariant submanifolds and almost complex
contact manifolds. We investigated relations between curvature tensors of these
manifolds. Moreover, we studied anti-invariant submanifolds of almost complex
contact metric manifolds.Some necessary conditions on which a submanifolds of
an almost complex contact metric manifolds is
- anti-invariant were given. Also we
found some characterizations for totally geodesic or umbilical
- anti-invariant submanifolds of
almost complex contact metric manifolds.




Kaynakça

  • W. M. Boothby and H. C. Wang, On concact manifolds, Ann. of Math.(2). vol.68 , pp. 721-734, (1958).
  • W. M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure. Math.III, Amer. Math. Soc., pp.144-154, (1961).
  • W. M. Boothby, A note on homogeneous complex contact manifolds, Proc.Amer. Math. Soc., 13, 276-280, (1962).
  • D. E. Blair, Riemannian Geometry of contactand symplectic Manifold. Brikhauser, (2002).
  • Y. Hatakeyama, Y. Ogawa, S. Tanno, Some properties of manifolds with contact metric structures, Tohoku Math. J. , 15, 42-48.
  • S. Ishihara and M. Konishi, Real contact 3-structure and complex contact structure, Southeast Asian Bulletin of Math, 3, 151-161, (1979).
  • S. Ishihara and M. Konishi, Complex almost contact manifolds, Kodai Math. J., 3, 385-396, (1980).
  • B. Korkmaz,Curvature and normality of complex contact manifolds, PhD Thesis, Michigan State University East Lansing, MI, USA © (1997).
  • B. Korkmaz, A curvature property of complex contact metric structure, Kyungpook Math. J. 38, 473-488, (1998).
  • B. Korkmaz, Normality of complex contact manifolds, Rocky Mountain J. Math., 30, 1343-1380, (2000).
  • Kobayashi, S., Principal fibre bundles with the1-dimensional toroidal group, Tohoku Math. J. 8, 29-45, (1956).
  • S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc.,10, 164-167, (1963).
  • S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. 15, 121-139, (1963).
  • J.W. Gray, Some global properties of contact structures Ann. of. Math. Soc. vol.42, pp.257, (1967).
  • S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) vol.12, pp 459-476, (1960).
  • J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.Math. and Mech., 14, 1033-1047, (1965).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Cumali Yildirim Bu kişi benim

Feyza Esra Erdogan

Yayımlanma Tarihi 30 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 3

Kaynak Göster

APA Yildirim, C., & Erdogan, F. E. (2016). On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences, 4(3), 277-289.
AMA Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. Eylül 2016;4(3):277-289.
Chicago Yildirim, Cumali, ve Feyza Esra Erdogan. “On G ̅-J Anti-Invariant Submanifolds of Almost Complex Contact Metric Manifolds”. New Trends in Mathematical Sciences 4, sy. 3 (Eylül 2016): 277-89.
EndNote Yildirim C, Erdogan FE (01 Eylül 2016) On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences 4 3 277–289.
IEEE C. Yildirim ve F. E. Erdogan, “On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds”, New Trends in Mathematical Sciences, c. 4, sy. 3, ss. 277–289, 2016.
ISNAD Yildirim, Cumali - Erdogan, Feyza Esra. “On G ̅-J Anti-Invariant Submanifolds of Almost Complex Contact Metric Manifolds”. New Trends in Mathematical Sciences 4/3 (Eylül 2016), 277-289.
JAMA Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. 2016;4:277–289.
MLA Yildirim, Cumali ve Feyza Esra Erdogan. “On G ̅-J Anti-Invariant Submanifolds of Almost Complex Contact Metric Manifolds”. New Trends in Mathematical Sciences, c. 4, sy. 3, 2016, ss. 277-89.
Vancouver Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. 2016;4(3):277-89.