Araştırma Makalesi
BibTex RIS Kaynak Göster

DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION

Yıl 2011, Cilt: 6 Sayı: 2, 36 - 47, 01.03.2011

Öz

Working with data set that has many variables or has fewer observation units than variables leads to difficulties in statistical analysis. In this situation dimension reduction is a necessary part of the data analysis. It is necessary because, it provides working with a subset of the existing features or to transform to a new reduced set of features and working with low dimensional data and simplify the data model by working with parsimonious model. There are some dimensionality reduction methods and all of them lean to use a linear combinations of m variables by reducing m dimensional data set to a dimensional data set (avariability in the variables. This paper provides study of three dimension reduction techniques, namely Principal Component Regression (PCR), Partial Least squares Regression (PLSR), and Reduced Rank Regression (RRR), and they were illustrated on a data set that has PCOS disease to help to choose the efficient factors (latent variables) for modeling and predicting fsh and lh hormones when the data set has small number of observation unit.)>

BOYUT İNDİRGEME TEKNİKLERİ: PCR, PLSR, RRR VE BİR SAĞLIK UYGULAMASI

Yıl 2011, Cilt: 6 Sayı: 2, 36 - 47, 01.03.2011

Öz

Çok fazla değişkene sahip veya değişken sayısından daha az gözlem sayısına sahip veri seti ile çalışmak istatistiksel analizde bazı zorluklara yol açmaktadır. Böyle bir durumda boyut indirgemesi analizin önemli bir parçasıdır. Boyut indirgemesi, veri setinde var olan özelliklere sahip daha küçük bir veri seti ile çalışmayı mümkün kılmaktadır. Boyut indirgeme teknikleri m boyutlu veri setini, m değişkenlerdeki değişimin büyük bir kısmını açıklayacak ve bu değişkenlerin doğrusal birleşimi olacak şekilde a boyutlu veri setine indirgemektedir. Bu çalışmada, bu tekniklerden Temel bileşenler regresyonu, Kısmi en küçük kareler regresyonu ve İndirgenmiş rank regresyonu yöntemleri anlatılarak, sağlık verisi üzerinde uygulaması
gösterilmiştir.

Toplam 0 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Fizik
Yazarlar

Elif Bulut Bu kişi benim

Özlem GÜRÜNLÜ Alma Bu kişi benim

Yayımlanma Tarihi 1 Mart 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 6 Sayı: 2

Kaynak Göster

APA Bulut, E., & Alma, Ö. . G. (2011). DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION. Physical Sciences, 6(2), 36-47.
AMA Bulut E, Alma ÖG. DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION. Physical Sciences. Mart 2011;6(2):36-47.
Chicago Bulut, Elif, ve Özlem GÜRÜNLÜ Alma. “DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION”. Physical Sciences 6, sy. 2 (Mart 2011): 36-47.
EndNote Bulut E, Alma ÖG (01 Mart 2011) DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION. Physical Sciences 6 2 36–47.
IEEE E. Bulut ve Ö. . G. Alma, “DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION”, Physical Sciences, c. 6, sy. 2, ss. 36–47, 2011.
ISNAD Bulut, Elif - Alma, Özlem GÜRÜNLÜ. “DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION”. Physical Sciences 6/2 (Mart 2011), 36-47.
JAMA Bulut E, Alma ÖG. DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION. Physical Sciences. 2011;6:36–47.
MLA Bulut, Elif ve Özlem GÜRÜNLÜ Alma. “DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION”. Physical Sciences, c. 6, sy. 2, 2011, ss. 36-47.
Vancouver Bulut E, Alma ÖG. DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH APPLICATION. Physical Sciences. 2011;6(2):36-47.