BibTex RIS Kaynak Göster

MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS

Yıl 2015, Cilt: 10 Sayı: 1, 1 - 13, 27.01.2015

Öz

By Hamilton operators, generalized quaternions have been expressed in terms of 4×4 matrices. In this paper, geometric applications of these matrices in generalized 4-space Eαβ^4 are given. We also show that the set of these matrices with the group operation of matrix multiplication is Lie group of 6-dimension.

Kaynakça

  • Jafari M., and Yayli, Y., (2013). Rotation in four dimensions via generalized Hamilton operators, Kuwait journal of science, Volume:40, Number:1, pp:45-56.
  • Jafari, M., and Yayli, Y., (2010). Homothetic motions at International Journal Contemporary of Mathematics Sciences. Volume:5, Number:47, pp:2319-2326.
  • Mamagani, A.B., and Jafari, M., (2013). Some notes on matrix of generalized quaternion, Volume:7, Number:14, pp: 1086-1093.
  • Meinrenken, E., (2010). Lie groups and Lie algebras, Lecture Notes, University of Toronto.
  • Pottman, H., and Wallner, J., (2000). Computational line geometry. Springer-Verlag, New York.
  • Unger,T., and Markin, N., (2008). Quadratic forms and space-time block codes from generalized quaternion and biquaternion algebras. IEEE transactions on information theory, Volume:57, Number:9, pp: 6148-6156.
  • Ward, J.P., (1997). Quaternions and Cayley numbers algebra and applications, Kluwer Academic Publishers, London.

’DE MATRIS CEBİRİ VE UYGULAMALARI

Yıl 2015, Cilt: 10 Sayı: 1, 1 - 13, 27.01.2015

Öz

Hamilton operatorleri ile bir gelişmiş kuaterniyon 4×4 matrisleri ile gösterilmiştir. Bu makalede matrislerin uygulamaları gelişmiş uzay’da verilmiştir. Ayrıca, bu matrislerin kümesi matris çarpım ile altı boyutlu bir Lie grubu oluşturulmuştur

Kaynakça

  • Jafari M., and Yayli, Y., (2013). Rotation in four dimensions via generalized Hamilton operators, Kuwait journal of science, Volume:40, Number:1, pp:45-56.
  • Jafari, M., and Yayli, Y., (2010). Homothetic motions at International Journal Contemporary of Mathematics Sciences. Volume:5, Number:47, pp:2319-2326.
  • Mamagani, A.B., and Jafari, M., (2013). Some notes on matrix of generalized quaternion, Volume:7, Number:14, pp: 1086-1093.
  • Meinrenken, E., (2010). Lie groups and Lie algebras, Lecture Notes, University of Toronto.
  • Pottman, H., and Wallner, J., (2000). Computational line geometry. Springer-Verlag, New York.
  • Unger,T., and Markin, N., (2008). Quadratic forms and space-time block codes from generalized quaternion and biquaternion algebras. IEEE transactions on information theory, Volume:57, Number:9, pp: 6148-6156.
  • Ward, J.P., (1997). Quaternions and Cayley numbers algebra and applications, Kluwer Academic Publishers, London.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Matematik
Yazarlar

Mehdi Jafarı

Yayımlanma Tarihi 27 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 10 Sayı: 1

Kaynak Göster

APA Jafarı, M. (2015). MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS. Physical Sciences, 10(1), 1-13. https://doi.org/10.12739/NWSA.2015.10.1.3A0067
AMA Jafarı M. MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS. Physical Sciences. Ocak 2015;10(1):1-13. doi:10.12739/NWSA.2015.10.1.3A0067
Chicago Jafarı, Mehdi. “MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS”. Physical Sciences 10, sy. 1 (Ocak 2015): 1-13. https://doi.org/10.12739/NWSA.2015.10.1.3A0067.
EndNote Jafarı M (01 Ocak 2015) MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS. Physical Sciences 10 1 1–13.
IEEE M. Jafarı, “MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS”, Physical Sciences, c. 10, sy. 1, ss. 1–13, 2015, doi: 10.12739/NWSA.2015.10.1.3A0067.
ISNAD Jafarı, Mehdi. “MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS”. Physical Sciences 10/1 (Ocak 2015), 1-13. https://doi.org/10.12739/NWSA.2015.10.1.3A0067.
JAMA Jafarı M. MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS. Physical Sciences. 2015;10:1–13.
MLA Jafarı, Mehdi. “MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS”. Physical Sciences, c. 10, sy. 1, 2015, ss. 1-13, doi:10.12739/NWSA.2015.10.1.3A0067.
Vancouver Jafarı M. MATRIX ALGEBRAS IN Eαβ^4 AND THEIR APPLICATIONS. Physical Sciences. 2015;10(1):1-13.