Araştırma Makalesi
BibTex RIS Kaynak Göster

Bakteriyel selüloz ve boraks katkılı atık gazete kağıtlarının termal ve optik özelliklerinin incelenmesi

Yıl 2022, , 229 - 237, 17.09.2022
https://doi.org/10.17568/ogmoad.1092226

Öz

Bu çalışmada geri dönüştürülmüş atık gazete kağıtlarından üretilmiş kağıtlara katkı maddesi olarak bakteriyel selüloz (BS) ilavesinin ve kağıdın yanma özelliğini geciktirmek amacıyla boraks pentahidrat (Na2B4O7.5H2O) uygulamasının, üretilen kağıtların termal ve optik özellikleri üzerine etkileri araştırılmıştır. Boraks uygulaması için daldırma yöntemi seçilmiş olup karşılaştırma yapabilmek için üretim esnasında boraks ilavesi de çalışılmıştır. Kağıtların yanma karakteristikleri ve kinetiğini belirlemek için termal özellikleri belirlenmiştir. Optik özellikleri için parlaklık, sarılık ve renk değerleri (L*,a*,b*) belirlenmiştir. TGA verileri değerlendirildiğinde daldırma yöntemi ile boraks uygulaması sonucu dönüm noktası sıcaklığının 377,53 °C’den 335,55 °C’ye düştüğü, sadece BS katkısı ile 379,53 °C’ye bir miktar artış gösterdiği tespit edilmiştir. BS katkılı kağıtların daldırma yöntemi ile boraks uygulaması sonucunda dönüm noktası sıcaklığının 334,24 °C’ye düştüğü ve %44,03 oranı ile diğer örneklere göre en yüksek 590 °C deki kalıntı miktarı verdiği belirlenmiştir. Sonuç olarak daldırma yöntemi ile boraks uygulaması yapılan BS katkılı kağıtların termal dayanımlarının diğerlerine göre daha iyi olduğu, BS ve boraksın kağıdın yanması sırasında kalori oluşumunu azalttığı dolayısı ile yanmayı hızlı bir şekilde sonlandırdığı, optik özellikler açısından BS katkısının ve boraks uygulamasının kağıdın parlaklık değerini azalttığı, sarılık değerini arttırdığı belirlenmiştir.

Destekleyen Kurum

"KAROK 2021"

Kaynakça

  • Akoğlu, A., Karahan, A.G., Çakır, İ., Çakmakçı, M.L., 2010. Bakteriyel selülozun özellikleri ve gıda sanayinde kullanımı. Gıda 35(2): 127-134.
  • Araújo, I.M.S., Silva, R.R., Pacheco, G., Lustri, W.R., Tercjak, A., Gutierrez, J., Júnior, J.R.S., Azevedo, F.H.C., Figuêredo, G.S., Vega, M.L., Ribeiro, S.J.L., Barudc, H.S., 2018. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179:341-349. DOI: 10.1016/j.carbpol.2017.09.081
  • Aydın, D. Y., Gürü, M., Ayar, B., Çakanyıldırım, Ç. 2016. Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği, Journal of Boron, 1(1), 33-39.
  • ASTM E313, 2005. Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates,” American Society of Testing Materials International, Philadelphia, PA, USA.
  • Aydıncak, K., 2012. Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Ankara, Türkiye.
  • Bayrak, H., Bayrak, C., Güvendikler, M.E., 2020. Kağıt Sektör Raporu. Doğu Marmara Kalkınma Ajansı, Yayın No: 2020 SAR-KR-009, Kocaeli.
  • Baysal, E., 1994. Çeşitli borlu ve WR bileşiklerinin kızılçam odununun bazı fiziksel özelliklerine etkisi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 112 s.
  • Bielecki, S., Krystynowicz, A.,Turkiewicz, M. and Kalinowska, H. 2000. Bacterial Cellulose. In: Steinbuchel, A. (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. WileyVCH Verlag GmbH, Munster, Germany.
  • Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S., 2009. Microbial cellulose: fermentative production and applications. Food Technology Biotechnology, 47(2): 107-124.
  • Curi. K., 1992. Atıkların Geri Kazanımı. Katı Atık ve Çevre Dergisi, İstanbul, 1992, 7: 3-5.
  • Dahman, Y., 2009. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology 9: 5105-5122.
  • Delmer, D.P., 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annual review of plant biology,50: 245-276.
  • Diesen, M., 1998. Economics of the Pulp and Paper Industry. In: Diesen, M. (Eds.), Papermaking Science and Technology Series, Book 1.Published In Cooperation with The Finnish Paper Engineers Association and TAPPI, Helsinki.
  • Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C. A., Trica, B., Moraru, A., and Oancea, F., 2017. Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9(374): 21-24. DOI: 10.3390/polym9080374
  • Domskiene, J., Sederaviciute, F. and Simonaityte, J., 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31(5): 644-652. DOI: 10.1108/IJCST-02-2019-0010
  • Dufresne, C. and Farnworth, E., 2000. Tea, kombucha, and health: A review. Food Research International, 33(6): 409-421. DOI: 10.1016/S0963-9969(00)00067-3 Eti Maden, 2020. Bor Sektör Raporu, Eti Maden İşletmeleri Genel Müdürlüğü, 32 sayfa.
  • Fillat, A., Martínez, J., Valls, C., Cusola, O., Roncero, M. B., Vidal, T., Valenzuela, S. V., Diaz, P. and Pastor, F. I. J., 2018. Bacterial cellulose for increasing barrier properties of paper products. Cellulose, 25: 6093-6105. DOI: 10.1007/s10570-018-1967-0
  • Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T. and Iqbal, H. M. N., 2016. Bacterial cellulose: A sustainable source to develop value-added products - a review, BioResources 11(2): 5641-5655. DOI: 10.15376/biores.11.2.Gallegos
  • Gao, W.-H., Chen, K.-F., Yang, R.-D., Yang, F. and Han, W.-J., 2011. Properties of bacterial cellulose and its influence on the physical properties of paper, BioResources 6(1): 144-153. DOI: 10.15376/biores.6.1.144-153
  • Gayathry, G., Gopalaswamy, G., 2014. Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research 39: 93-96.
  • Güzel, M., Akpınar, Ö., 2017. Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. Gıda, 42(5): 620-633.
  • Hubbe M. A. and Gill, R. A., 2016. Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role. BioResources 11(1) 2886-2963. DOI: 10.15376/biores.11.1.2886-2963
  • Johnson, D.C. and Neogi, A.N., 1989. Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • ISO 2470-1, 2016. Paper, board and pulps-Measurement of diffuse blue reflectance factor-Part 1: Indoor daylight conditions (ISO brightness).International Organization for Standardization, Geneva, Switzerland.
  • Kaminski, K., Jarosz, M., Grudzien, J., Pawlik, J., Zastawnik, P., Pandyra, P., and Kołodziejczyk, A. M., 2020. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles, Cellulose 27: 5353-5365. DOI: 10.1007/s10570-020-03128-3
  • Karagözoğlu, M. B., Özyonar, F., Yılmaz, A., Atmaca, E., 2009. Katık Atıkların Yeniden Kazanımı ve Önemi. TÜRKAY 2009, Türkiye'de Katı Atık Yönetimi Sempozyumu, İstanbul,15-17 Haziran 2009, pp. 1-8.
  • Keshk, S.M.A.S., 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohydrate Polymers 99: 98-100. DOI: 10.1016/j.carbpol.2013.08.060
  • Klemn, D., Schumann, D., Udhardt, U., and Marsch, S., 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery, Progress in Polymer Science 26(9): 1561-1603. DOI: 10.1016/S0079-6700(01)00021-1
  • Kozlowski, R., Helwig, M., Przepiera, A., 1995. Light-weight, environmentally friendly fire retardant composite boards for panelling and construction. Inorganic Bonded Wood and Fiber Composite Materials, 4 (1), 6-11.
  • LeVan, S. L. and Winandy, J.E., 1990. Effects of fire retardant treatments on wood strentgh: a rewiew, Wood and Fiber Science , 22 (1): 113-131.
  • Lee, J. Y., Kim, E. H., and Sung, Y. J., 2016. Improvement in the retention and strength of paper made from white-grade wastepaper, BioResources 11(2):4718-4726. DOI: 10.15376/biores.11.2.4718-4726.
  • Lin, D., Sanchez, P.L., Li, R. and Li, Z., 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source, Bioresource Technology 151:113-119. DOI: 10.1016/j.biortech.2013.10.052
  • McKinney, R.W.J., 1995. Wastepaper preparation and contaminant removal. In: McKinney, R.W.J. (Ed.), Technology of Paper Recycling, Blackie Academic and Professional Publication, London, pp. 48-124.
  • Ng, C., Sheu, F., Wang, C., Shyu, Y., 2004. Fermentation of Monascus purpureus on agri-byproducts to make colorful and functional bacterial cellulose (NATA), Microbiology Indonesia, 4(1), 6- 10.
  • Othman, R., Isa, N., Othman, A. 2015. Precipitated calcium carbonate from industrial waste for paper making. Sains Malaysiana, 44:1561–1565.
  • Özdemir, F. and Tutus, A., 2013. Effects of fire retardants on the combustion behavior of high-density fiberboard. Bioresources, 8 (2): 1665-1674.
  • Peşman, E., 2010. Atık Gazete ve Magazin Kağıtlarının Mürekkep Uzaklaştırma ve Ağartma Özelliklerinin Belirlenmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Rantanen, J., Dimic-Misic, K., Kuusisto, J. and Maloney, T., 2015. The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering. Cellulose 22: 4003-4015. DOI: 10.1007/s10570-015-0777-x.
  • Reiniati, I., Hrymak, A.N. and Margaritis, A., 2017. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524. DOI: 10.1080/07388551.2016.1189871
  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A. and Shchankin, M., 2018. Cost effective production of bacterial celluloseusing acidic food industry by-products. Brazilian Journal of Microbiology, 49(1): 151-159. DOI:10.1016/j.bjm.2017.12.012.
  • Saibuatong, O.A. and Phisalaphong, M., 2010. Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2): 455- 460. DOI: 10.1016/j.carbpol.2009.08.039
  • Shen, K.K., Kochesfahani, S.H. and Jouffret, F., 2010, Boron-based flame retardants and flame retardancy, In: Morgan, A. B., Wilkie C. A. (Eds.), Fire Retardancy of Polymeric Materials, Second Edition, CRC Press, pp.207-237.
  • Shi, Z., Zhang, Y., Phillips, G. O. and Yang, G., 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545. DOI: 10.1016/j.foodhyd.2013.07. 012.
  • TAPPI T205 sp-02, 2002. Forming handsheets for physical tests of pulp. TAPPI Press, Atlanta
  • TAPPI T402 om-93, 1993. Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. TAPPI Press, Atlanta
  • TAPPI T 527 om-13, 2013. Color of paper and paperboard (d/0°, C/2), TAPPI Press, Atlanta.
  • Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F., 1998, Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187-200.
  • Yamanaka, S. ve Sugiyama, J., 2000. Structural modification of bacterial cellulose. Cellulose 7(3):213-225. DOI: 10.1023/A:1009208022957
  • Yuan, J., Wang, T., Huang, X., and Wei, W., 2016, Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11(4):9290-9301. DOI: 10.15376/biores.11.4.9290-9301

Investigation of thermal and optical properties of waste newspaper with bacterial cellulose and borax additives

Yıl 2022, , 229 - 237, 17.09.2022
https://doi.org/10.17568/ogmoad.1092226

Öz

In this study, the effects of bacterial cellulose (BC) and the borax pentahydrate (Na2B4O7.5H2O), which was applied to retard the burning property of the paper, additives as reinforcement to the recycled waste newspaper were investigated, on the thermal and optical properties of the produced papers. The immersed method was chosen for the borax application, and the addition of borax during production was also studied to make a comparison. In order to determine the burning characteristics and kinetics of the papers, their thermal properties were detected. Brightness, yellowness, and color values (L*, a*, b*) were determined for optical properties. When the TGA data were evaluated, it was determined that the inflection point temperature decreased from 377.53 °C to 335.55 °C as a result of borax application with the immersion method, and it increased slightly to 379.53 °C with only BS additive. The results of the borax application of BS reinforced papers by the immersion method showed that the inflection point temperature decreased to 334.24 °C, and it had the highest residual amount at 590 °C with a rate of 44.03% compared to the other samples. As a result, the thermal resistance of BS reinforced papers with borax application with the immersed method is better than the other samples. BS and borax reduce the formation of calories during the burning of the paper; thus, this ends the burning quickly. In terms of optical properties, it was found that BS reinforcement and borax application reduce the brightness value and increase the yellowness of the paper.

Kaynakça

  • Akoğlu, A., Karahan, A.G., Çakır, İ., Çakmakçı, M.L., 2010. Bakteriyel selülozun özellikleri ve gıda sanayinde kullanımı. Gıda 35(2): 127-134.
  • Araújo, I.M.S., Silva, R.R., Pacheco, G., Lustri, W.R., Tercjak, A., Gutierrez, J., Júnior, J.R.S., Azevedo, F.H.C., Figuêredo, G.S., Vega, M.L., Ribeiro, S.J.L., Barudc, H.S., 2018. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179:341-349. DOI: 10.1016/j.carbpol.2017.09.081
  • Aydın, D. Y., Gürü, M., Ayar, B., Çakanyıldırım, Ç. 2016. Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği, Journal of Boron, 1(1), 33-39.
  • ASTM E313, 2005. Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates,” American Society of Testing Materials International, Philadelphia, PA, USA.
  • Aydıncak, K., 2012. Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Ankara, Türkiye.
  • Bayrak, H., Bayrak, C., Güvendikler, M.E., 2020. Kağıt Sektör Raporu. Doğu Marmara Kalkınma Ajansı, Yayın No: 2020 SAR-KR-009, Kocaeli.
  • Baysal, E., 1994. Çeşitli borlu ve WR bileşiklerinin kızılçam odununun bazı fiziksel özelliklerine etkisi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 112 s.
  • Bielecki, S., Krystynowicz, A.,Turkiewicz, M. and Kalinowska, H. 2000. Bacterial Cellulose. In: Steinbuchel, A. (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. WileyVCH Verlag GmbH, Munster, Germany.
  • Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S., 2009. Microbial cellulose: fermentative production and applications. Food Technology Biotechnology, 47(2): 107-124.
  • Curi. K., 1992. Atıkların Geri Kazanımı. Katı Atık ve Çevre Dergisi, İstanbul, 1992, 7: 3-5.
  • Dahman, Y., 2009. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology 9: 5105-5122.
  • Delmer, D.P., 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annual review of plant biology,50: 245-276.
  • Diesen, M., 1998. Economics of the Pulp and Paper Industry. In: Diesen, M. (Eds.), Papermaking Science and Technology Series, Book 1.Published In Cooperation with The Finnish Paper Engineers Association and TAPPI, Helsinki.
  • Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C. A., Trica, B., Moraru, A., and Oancea, F., 2017. Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9(374): 21-24. DOI: 10.3390/polym9080374
  • Domskiene, J., Sederaviciute, F. and Simonaityte, J., 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31(5): 644-652. DOI: 10.1108/IJCST-02-2019-0010
  • Dufresne, C. and Farnworth, E., 2000. Tea, kombucha, and health: A review. Food Research International, 33(6): 409-421. DOI: 10.1016/S0963-9969(00)00067-3 Eti Maden, 2020. Bor Sektör Raporu, Eti Maden İşletmeleri Genel Müdürlüğü, 32 sayfa.
  • Fillat, A., Martínez, J., Valls, C., Cusola, O., Roncero, M. B., Vidal, T., Valenzuela, S. V., Diaz, P. and Pastor, F. I. J., 2018. Bacterial cellulose for increasing barrier properties of paper products. Cellulose, 25: 6093-6105. DOI: 10.1007/s10570-018-1967-0
  • Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T. and Iqbal, H. M. N., 2016. Bacterial cellulose: A sustainable source to develop value-added products - a review, BioResources 11(2): 5641-5655. DOI: 10.15376/biores.11.2.Gallegos
  • Gao, W.-H., Chen, K.-F., Yang, R.-D., Yang, F. and Han, W.-J., 2011. Properties of bacterial cellulose and its influence on the physical properties of paper, BioResources 6(1): 144-153. DOI: 10.15376/biores.6.1.144-153
  • Gayathry, G., Gopalaswamy, G., 2014. Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research 39: 93-96.
  • Güzel, M., Akpınar, Ö., 2017. Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. Gıda, 42(5): 620-633.
  • Hubbe M. A. and Gill, R. A., 2016. Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role. BioResources 11(1) 2886-2963. DOI: 10.15376/biores.11.1.2886-2963
  • Johnson, D.C. and Neogi, A.N., 1989. Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • ISO 2470-1, 2016. Paper, board and pulps-Measurement of diffuse blue reflectance factor-Part 1: Indoor daylight conditions (ISO brightness).International Organization for Standardization, Geneva, Switzerland.
  • Kaminski, K., Jarosz, M., Grudzien, J., Pawlik, J., Zastawnik, P., Pandyra, P., and Kołodziejczyk, A. M., 2020. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles, Cellulose 27: 5353-5365. DOI: 10.1007/s10570-020-03128-3
  • Karagözoğlu, M. B., Özyonar, F., Yılmaz, A., Atmaca, E., 2009. Katık Atıkların Yeniden Kazanımı ve Önemi. TÜRKAY 2009, Türkiye'de Katı Atık Yönetimi Sempozyumu, İstanbul,15-17 Haziran 2009, pp. 1-8.
  • Keshk, S.M.A.S., 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohydrate Polymers 99: 98-100. DOI: 10.1016/j.carbpol.2013.08.060
  • Klemn, D., Schumann, D., Udhardt, U., and Marsch, S., 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery, Progress in Polymer Science 26(9): 1561-1603. DOI: 10.1016/S0079-6700(01)00021-1
  • Kozlowski, R., Helwig, M., Przepiera, A., 1995. Light-weight, environmentally friendly fire retardant composite boards for panelling and construction. Inorganic Bonded Wood and Fiber Composite Materials, 4 (1), 6-11.
  • LeVan, S. L. and Winandy, J.E., 1990. Effects of fire retardant treatments on wood strentgh: a rewiew, Wood and Fiber Science , 22 (1): 113-131.
  • Lee, J. Y., Kim, E. H., and Sung, Y. J., 2016. Improvement in the retention and strength of paper made from white-grade wastepaper, BioResources 11(2):4718-4726. DOI: 10.15376/biores.11.2.4718-4726.
  • Lin, D., Sanchez, P.L., Li, R. and Li, Z., 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source, Bioresource Technology 151:113-119. DOI: 10.1016/j.biortech.2013.10.052
  • McKinney, R.W.J., 1995. Wastepaper preparation and contaminant removal. In: McKinney, R.W.J. (Ed.), Technology of Paper Recycling, Blackie Academic and Professional Publication, London, pp. 48-124.
  • Ng, C., Sheu, F., Wang, C., Shyu, Y., 2004. Fermentation of Monascus purpureus on agri-byproducts to make colorful and functional bacterial cellulose (NATA), Microbiology Indonesia, 4(1), 6- 10.
  • Othman, R., Isa, N., Othman, A. 2015. Precipitated calcium carbonate from industrial waste for paper making. Sains Malaysiana, 44:1561–1565.
  • Özdemir, F. and Tutus, A., 2013. Effects of fire retardants on the combustion behavior of high-density fiberboard. Bioresources, 8 (2): 1665-1674.
  • Peşman, E., 2010. Atık Gazete ve Magazin Kağıtlarının Mürekkep Uzaklaştırma ve Ağartma Özelliklerinin Belirlenmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Rantanen, J., Dimic-Misic, K., Kuusisto, J. and Maloney, T., 2015. The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering. Cellulose 22: 4003-4015. DOI: 10.1007/s10570-015-0777-x.
  • Reiniati, I., Hrymak, A.N. and Margaritis, A., 2017. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524. DOI: 10.1080/07388551.2016.1189871
  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A. and Shchankin, M., 2018. Cost effective production of bacterial celluloseusing acidic food industry by-products. Brazilian Journal of Microbiology, 49(1): 151-159. DOI:10.1016/j.bjm.2017.12.012.
  • Saibuatong, O.A. and Phisalaphong, M., 2010. Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2): 455- 460. DOI: 10.1016/j.carbpol.2009.08.039
  • Shen, K.K., Kochesfahani, S.H. and Jouffret, F., 2010, Boron-based flame retardants and flame retardancy, In: Morgan, A. B., Wilkie C. A. (Eds.), Fire Retardancy of Polymeric Materials, Second Edition, CRC Press, pp.207-237.
  • Shi, Z., Zhang, Y., Phillips, G. O. and Yang, G., 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545. DOI: 10.1016/j.foodhyd.2013.07. 012.
  • TAPPI T205 sp-02, 2002. Forming handsheets for physical tests of pulp. TAPPI Press, Atlanta
  • TAPPI T402 om-93, 1993. Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. TAPPI Press, Atlanta
  • TAPPI T 527 om-13, 2013. Color of paper and paperboard (d/0°, C/2), TAPPI Press, Atlanta.
  • Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F., 1998, Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187-200.
  • Yamanaka, S. ve Sugiyama, J., 2000. Structural modification of bacterial cellulose. Cellulose 7(3):213-225. DOI: 10.1023/A:1009208022957
  • Yuan, J., Wang, T., Huang, X., and Wei, W., 2016, Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11(4):9290-9301. DOI: 10.15376/biores.11.4.9290-9301
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Orman Ürünleri
Yazarlar

Evren Ersoy Kalyoncu 0000-0002-4538-7187

Emrah Peşman 0000-0003-0189-4715

Yayımlanma Tarihi 17 Eylül 2022
Gönderilme Tarihi 23 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ersoy Kalyoncu, E., & Peşman, E. (2022). Bakteriyel selüloz ve boraks katkılı atık gazete kağıtlarının termal ve optik özelliklerinin incelenmesi. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 229-237. https://doi.org/10.17568/ogmoad.1092226