Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal şartlar etkisinde kalmış kayısı ağacı (Prunus armeniaca L.) dal odunlarının kullanım olanaklarının değerlendirilmesi

Yıl 2025, Cilt: 12 Sayı: 2, 144 - 153
https://doi.org/10.17568/ogmoad.1670466

Öz

Budanan veya kuruyan ağaçlardan çıkan dal odunları ağaç biyokütlesinin artıkları olarak kabul edilir. Sürdürülebilirlik kavramına olan ilgi, bu artık odunun da çeşitli alanlar için ek bir hammadde kaynağı olarak düşünülmesini sağlamıştır. Uzun süre açık hava şartları altında bekleyen ve değerlendirilmeyen artık odunların yapısında oluşan değişimler kullanım yerlerini etkileyebilir. Bu nedenle söz konusu odunların özelliklerinin tanımlanması gereklidir. Bu çalışmanın amacı, kayısı ağacının (Prunus armeniaca) artık dal odunlarının doğal çevre koşulları altında zamanla uğradığı yapısal değişimleri belirlemek ve bu odunların endüstriyel açıdan kullanıma uygunluğunu değerlendirmektir. Kayısı ağacı yaygın olarak yetiştirilen ve her yıl yapılan bakım çalışmaları nedeniyle yeterli artık odun oluşturan bir türdür. Bu çalışmada 3 yıl doğal şartların etkisine maruz kalan kayısı ağacına ait dal odunları incelenmiştir. Taramalı Elektron Mikroskobu (SEM) bulguları tüm odun hücrelerinin morfolojik yapısının değiştiğini göstermiştir. X-ışını Kırınım Analizi (XRD) ve Termogravimetrik Analiz (TGA) kullanılarak örnek karakterize edilmiştir. XRD analizinde CRI değeri %41,6; TGA sonucunda ise %83,1 kütle kaybı ölçülmüştür. Bu odunlar yüksek mukavemet aranmayan malzemeler ve biyoyakıt yapımı gibi endüstriyel alanlarda kullanılabilir.

Teşekkür

Çalışmada, örnek hazırlama ve analizlerde yardımlarından faydalandığım Sayın Prof. Dr. Barbaros YAMAN ve Sayın Prof. Dr. Deniz AYDEMİR'e teşekkürlerimi sunarım.

Kaynakça

  • Ahmed, S. Z., Panezai, M. A., Achakzai, J. K., Kakar, A. M., Khan, N. Y., Tareen, A. K., Tareen, S., Habibullah, B., Khan, N. G., 2023. Biological activities and phytochemistry of apricot (Prunus armeniace L.) grown in Balochistan (A review). Europian Academic Research 11: 114-121
  • Akhmedov, S., Ivanova, T., Abdulloeva, S., Muntean, A., Krepl, V., 2019. Contribution to the energy situation in Tajikistan by using residual apricot branches after pruning as an alternative fuel. Energies 12(16): 3169. Doi: 10.3390/en12163169
  • Aydemir, D., Aksu, O., Bardak, T., Yaman, B., Sözen, E., Yalçın, Ö.Ü., Gündüz, G., Koçan, N., 2024. Mechanical characterization and strain analysis applied to the heat treatment of wood materials, by means of digital image correlation. BioResources 19(2): 3010. Doi: 10.15376/biores.19.2.3010-3030
  • Berlyn, P.G., Miksche, J., 1976. Botanical Microtechnique and Cytochemystry. The Iowa State University Press, Ames, Iowa
  • Bozlar, T., Gerçek, V., Yılmaz, S., Usta, A., 2014. Kızılağaç Plantasyonlarında Odunun Anatomik Özellikleri Üzerine Yetişme Ortamının Etkileri. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, 22-24 Ekim, Isparta
  • Boztoprak, H., Ergün, M. E, 2017. Yapraklı ağaçlarda trahe ve liflerin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 6(2): 87-96
  • Broda M., Carmen-Mihaela P., 2019. Natural decay of archaeological oak wood versus artificial degradation processes-An FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 209: 280-287. Doi: 10.1016/j.saa.2018.10.057
  • Brodin, I, Sjöholm, E., Gallerstedt, G., 2010. The behavior of kraft lignin during thermal treatment. J. Anal. Appl. Pyrolysis 87:70-77. Doi: 10.1016/j.jaap.2009.10.005
  • Bruno, M. R., 2023. Variability and chemical composition of the extractive content of woody residues from three European orchard species: Apricot (Prunus armeniaca L.), olive (Olea europea L.), and orange trees (Citrus sinensis L.). JSFA Reports 3(2): 82-97. Doi: 10.1002/jsf2.99
  • Bruno, M. R., Russo, D., Faraone, I., D'Auria, M., Milella, L., Todaro, L., 2021. Orchard biomass residues: Chemical composition, biological activity and wood characterization of apricot tree (Prunus armeniaca L.). Biofuels, Bioproducts and Biorefining 15(2): 377-391. Doi: 10.1002/bbb.2178
  • Carlquist, S., 1975. Ecological Strategies of Xylem Evolution. Berkeley University, California Press.
  • Clair, B., Thibaut, B., 2014. Physical and Mechanical Properties of Reaction Wood. The Biology of Reaction Wood. Springer Series in Wood Science. Springe: Berlin/Heidelberg, Germany. 249p, ISBN 978-3-642-10813-6
  • Çavuş, V., 2020. Determination of some physical and mechanical properties of apricot wood (Prunus armeniaca L.). Bartın Orman Fakültesi Dergisi 22(2): 457-464. Doi: 10.24011/barofd.729707
  • Demirbaş, A., 2001. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion and Management, 42(11): 1357-1378. Doi:10.1016/S0196-8904(00)00137-0
  • El Kayal, W., Chamas, Z., El-Sharkawy, I., Subramanian, J., 2021. Comparative anatomical responses of tolerant and susceptible European plum varieties to black knot disease. Plant Disease 105(10): 3244-3249. Doi: 10.1094/PDIS-07-20-1626-RE
  • Ercişli, S., Ağar, G., Yıldırım, N., Eşitken, A., Orhan, E., 2009. Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Romanian Biotechnological Letters 14(4): 4582-4588
  • Ergün, H., 2019. Yapraklı ve iğne yapraklı ağaçlarda homojen öz ışınların morfolojik işlemlerle belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 7(1): 52-59. Doi: 10.21923/jesd.463819
  • FAO. 2015. Fact and figures: Agricultural production. Food and agriculture organization of the united nations, Rome, http://faostat.fao.org/site/339/ default.aspx (Ziyaret Tarihi: 22.01.2025).
  • FAO. 2024. Food and Agriculture Organization (FAO) of the United Nations. faostat.fao.org/site/339/default.aspx (Ziyaret tarihi: 22.01.2025)
  • Gençer, A., Özgül, U., Onat, S. M., Gündüz, G., Yaman, B., Yazıcı, H., 2018. Chemical and morphological properties of apricot wood (Prunus armeniaca L.) and fruit endocarp. Journal of Bartın Faculty of Forestry 20(2): 205-209. Doi: 10.24011/barofd.412958
  • Gritsch, C., Wan, Y., Mitchell, R. A., Shewry, P. R., Hanley, S. J., Karp, A., 2015. G-fibre cell wall development in willow stems during tension wood induction. Journal of Experimental Botany 66(20): 6447-6459. Doi: 10.1093/jxb/erv358
  • Gülsoy, S. K., 2021. A Literature Review on the Wood Fiber Morphology of Fruit Trees. Şu eserde: Research and Reviews in Agriculture, Forestry and Aquaculture Sciences-I, s. 103-130
  • Gündüz, G., Yaman, B., Özden, S., Dönmez, S. C., 2013. Anatomy of wooden core of Ottoman composite archery bows. Sains Malaysiana 42(5): 547-552
  • Hacıseferoğulları, H., Gezer, I., Özcan, M. M., Asma, B., 2007. Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering 79(1): 364-373. Doi: 10.1016/j.jfoodeng.2006.02.003
  • Hamed, S. A., Ali, M. F., El Hadidi, N. M., 2012. Using SEM in Monitoring in Archaeological Wood: A review. Şu eserde: Current microscopy contributions to advances in science and technology. Badajoz: Formatex Research Center, Spain, 1077-1084
  • Ihnát, V., Fišerová, M., Opálená, E., Russ, A., Boháček, Š., 2021. Chemical composition and fibre characteristics of branch wood of selected hardwood species. Acta Facultatis Xylologiae Zvolen res Publica Slovaca 63(2): 17-30. Doi: 10.17423/afx.2021.63.2.02
  • Imren, E. 2022. Effect of weathering conditions on wood surface roughness: Optimal parameters determined via Taguchi analysis. BioResources 17(4): 6668.
  • Janković, B., Manić, N., Dodevski, V., Radojević, M., Stojiljković, D., 2020. Kinetic study of oxy-combustion of plane tree (Platanus orientalis) seeds (PTS) in O2/ Ar atmosphere. J Therm Anal Calorim142:953–976. Doi: 10. 1007/ s10973- 019- 09154-z
  • Jiang, F., Zhang, J., Wang, S., Yang, L., Luo, Y., Gao, S., Zhang, M., Wu, S., Hu, S. Sun, H., Wang, Y., 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Horticulture Research 6(128): 1-12. Doi: 10.1038/s41438-019-0215-6
  • Kumar, S., Gupta, A., Tahseen, A. M., Rastogi, A., 2024. A review of phytochemical and pharmacological action of Prunus armeniaca. International Journal of Pharmacognosy and Life Science 5(1): 107-115. Doi: 10.33545/27072827.2024.v5.i1b.115
  • Lee, H. H., Ahn, J. H., Kwon, A. R., Lee, E. S., Kwak, J. H., Min, Y. H., 2014. Chemical composition and antimicrobial activity of the essential oil of apricot seed. Phytotherapy research 28(12): 1867-1872. Doi: 10.1002/ptr.5219
  • Mammoliti, A., Cataldo, M. F., Papandrea, S. F., Proto, A. R., 2024. Mechanical properties of branch and stem wood for two Mediterranean cultivars of olive tree. Journal of Wood Science 70(1): 40. Doi: 10.1186/s10086-024-02153-1
  • Maria, Ş, F., Botu, I., 2016. Observations on some anatomical elements of annual branches, in order to establish differences between species of the genus Prunus. Agriculture - Science and Practice 3- 4: 99-100
  • Mészáros, E., Jakab, E., Várhegyi, G., 2007. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. Journal of Analytical and Applied Pyrolysis 79(1-2): 61-70. Doi:10.1016/j.jaap.2006.12.007
  • MGM. 2025. Meteoroloji Genel Müdürlüğü. mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx (Ziyaret tarihi: 03.02.2025)
  • Mishnaevski, L.J., Qing, H., 2008. Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Computational Materials Science 44(2): 363-370. Doi: 10.1016/j.commatsci.2008.03.043
  • Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T., Sundberg, B., Mellerowicz, E.J., 2007. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar - a glimpse into the mechanism of the balancing act of trees. Plant and Cell Physiology 48:843-855. Doi: 10.1093/pcp/pcm055
  • Noshiro, S., Suzuki, M., 2001. Ontogenetic wood anatomy of tree and subtree species of Nepa- lese Rhododendron (Ericaceae) and characterization of shrub species. American Journal of Botany 88: 560-569. Doi: 10.2307/2657054
  • Okai, R., Boateng, O., 2007. Analysis of sawn lumber production from logging residues of branchwood of Aningeria robusta and Termina liaivorensis. European Journal of Forest Research 126(3): 385-390. Doi: 10.1007/s10342-006-0157-z.
  • Olvera, C. P. P., Aguirre, M. M., Romero, J. C., Pacheco, L., 2008. Wood anatomy of five species of the family Rosaceae. Madera y Bosques 14(1): 81-105
  • Ortega-Vidal, J., Mut-Salud, N., De La Torre, J.M., Altarejos, J., Salido, S., 2024. Chemical characterization of pruning wood extracts from six Japanese plum (Prunus salicina Lindl.) cultivars and their antitumor activity. Molecules 29(16): 3887. Doi: 10.3390/molecules29163887
  • Ortega-Vidal, J., Ruiz‐Martos, L., Salido, S., Altarejos, J., 2023. Proanthocyanidins in pruning wood extracts of four European plum (Prunus domestica L.) cultivars and their hLDHA inhibitory activity. Chemistry & Biodiversity 20(5): e202200931. Doi: 10.1002/cbdv.202200931
  • Passialis C.N, Grigoriou A. H., 1999. Technical properties of branch-wood of apple, peach, pear, apricot and cherry fruit trees. Holz als Roh-und Werkstoff 57(1):41-4
  • Romero-García, J. M., Sanchez, A., Rendón-Acosta, G., Martínez-Patiño, J. C., Ruiz, E., Magaña, G., Castro, E., 2016. An olive tree pruning biorefinery for co-producing high value-added bioproducts and biofuels: Economic and energy efficiency analysis. BioEnergy Research 9: 1070-1086. Doi: 10.1007/s12155-016-9786-3
  • Rowell, R.M., 2013. Handbook of Wood Chemistry and Wood Composites. 2nd ed. Taylor & Francis Group, USA: CRC Press.
  • Saka, S., 1993. Structure and Chemical Composition Of Wood as A Natural Compositematerial. Şu eserde: Recent Research On Wood And Wood-Based Materials: Current Japanese Materials Research, Vol. 11. Amsterdam, The Netherlands: Elsevier, p. 1-20
  • Shmulsky, R., Jones, P.D., 2011. Forest Products and Wood Science an Introduction. Sixth Edition, John Wiley and Sons Ltd. Publisher, UK
  • Tajik, M., Kiaei, M., Torshizi, H. J., 2015. Apricot wood- A potential source of fibrous raw material for paper industry. Comptes Rendus de l’Académie Bulgare des Sciences 68: 329-336
  • Thurner, F., Mann, U., 1981. Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development 20(3): 482-488
  • Trieu, N. M., ve Thinh, N. T., 2023. A novel method in wood identification based on anatomical image using hybrid model. Computer Systems Science and Engineering 47(2). Doi: 10.32604/csse.2023.040030
  • Tutuş, A., Çiçekler, M., Ayaz, A., 2016. Kayısı (Prunus armeniaca L.) odunu yongalarının kâğıt hamuru ve kâğıt üretiminde değerlendirilmesi. Turkish Journal of Forestry 17(1): 61-67. Doi: 10.18182/tjf.29700
  • Van Wesenbeeck, B. K., Wolters, G., Antolínez, J. A., Kalloe, S., Hofland, B., De Boer, W., Çete, C., Bouma, T. J., 2022. Woods versus waves: Wave attenuation through non-uniform forests under extreme conditions. Scientifc Reports 12:1884. Doi: 10.1038/s41598-022-05753-3
  • Vane, C. H., Drage, T. C., Snape, C. E., Stephenson, M. H., Foster, C., 2005. Decay of cultivated apricot wood (Prunus armeniaca) by the ascomycete Hypocrea sulphurea, using solid state 13C NMR and off-line TMAH thermochemolysis with GC–MS. International Biodeterioration & Biodegradation 55(3): 175-185. Doi: 10.1016/j.ibiod.2004.11.004
  • Van Rooij, A., Badel, E., Barczi, J. F., Caraglio, Y., Almeras, T., Gril, J., 2023. Modelling the growth stress in tree branches: Eccentric growth vs. reaction wood. Peer Community Journal 3.
  • Vitázek, I., Šotnar, M., Hrehová, S., Darnadyová, K., Mareček, J., 2021. Isothermal kinetic analysis of the thermal decomposition of wood chips from an apple tree. Processes 9(2): 195.
  • Von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, K., Carrer, M., 2016. Quantitative wood anatomy-Practical guidelines. Frontiers in Plant Science, 7: 781. Doi: 10.3389/fpls.2016.00781
  • Yıldız, S., Yıldız, U. C., Tomak, E. D., 2011. The effects of natural weathering on the properties of heat-treated alder wood. BioResources 6(3).
  • Willig, G., Brunissen, F., Brunois, F., Godon, B., Magro, C., Monteux, C., Peyrot, C., Ioannou, I., 2022. Phenolic compounds extracted from cherry tree (Prunus avium) branches: Impact of the process on cosmetic properties. Antioxidants 11(5):813. Doi: 10.3390/antiox11050813
  • WSL, 2025. Swiss Federal Institute for Forest, Snow and Landscape Research. wsl.ch/land/products/dendro (Ziyaret tarihi: 27.2.2025)
  • Zaurov, D. E., Molnar, T. J., Eisenman, S. W., Ford, T. M., Mavlyanova, R. F., Capik, J. M., Reed Funk, C., Goffreda, J. C., 2013. Genetic resources of apricots (Prunus armeniaca L.) in Central Asia. HortScience 48(6): 681-691
  • Zheng, T., Li, P., Zhuo, X., Liu, W., Qiu, L., Li, L., Yuan, C., Sun, L., Zhang, Z., Wang, J., 2022. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytol. 235:141-156. Doi: 10.1111/nph.17894
  • Zimmermann, M.H., 1983. Xylem Structure and the Ascent of Sap. New York: Springer, Berlin- Heidelberg
  • Zor, M., Görgün, H. V., Vaziri, M., 2021. X-ışını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) kullanılarak kaynaklanan göknar, meşe ve kestane odununun yapısal karakterizasyonu. Bartın Orman Fakültesi Dergisi 23(3): 871-877. Doi: 10.24011/barofd.989542

Investigating the utilization opportunities of apricot tree (Prunus armeniaca L.) branch wood affected by natural conditions

Yıl 2025, Cilt: 12 Sayı: 2, 144 - 153
https://doi.org/10.17568/ogmoad.1670466

Öz

Branch wood derived from pruned or naturally dead trees is considered a residue of tree biomass. The growing interest in the concept of sustainability has led to the consideration of residual wood as an additional raw material source for various applications. Changes in the structure of residual wood that has remained outdoors under natural conditions for extended periods without being utilized can affect its potential applications. Therefore, it is necessary to characterize the properties of such wood. The aim of this study is to determine the structural changes occurring over time in apricot (Prunus armeniaca) branch residues exposed to natural environmental conditions and to evaluate their potential for industrial use. The apricot tree is a widely cultivated species that generates a sufficient amount of residual wood annually due to regular maintenance practices. In this study, branch wood from apricot trees that had been exposed to natural conditions for three years was examined. Scanning Electron Microscope (SEM) findings showed that the morphological structure of all wood cells had changed. The samples were characterized using X-Ray Diffraction (XRD) and Thermogravimetric Analysis (TGA). In the XRD analysis, the CRI value was measured as 41.6%, and the TGA results showed a mass loss of 83.1%. These wood residues can be used in industrial applications, particularly in the production of materials where high strength is not required and in biofuel production.

Kaynakça

  • Ahmed, S. Z., Panezai, M. A., Achakzai, J. K., Kakar, A. M., Khan, N. Y., Tareen, A. K., Tareen, S., Habibullah, B., Khan, N. G., 2023. Biological activities and phytochemistry of apricot (Prunus armeniace L.) grown in Balochistan (A review). Europian Academic Research 11: 114-121
  • Akhmedov, S., Ivanova, T., Abdulloeva, S., Muntean, A., Krepl, V., 2019. Contribution to the energy situation in Tajikistan by using residual apricot branches after pruning as an alternative fuel. Energies 12(16): 3169. Doi: 10.3390/en12163169
  • Aydemir, D., Aksu, O., Bardak, T., Yaman, B., Sözen, E., Yalçın, Ö.Ü., Gündüz, G., Koçan, N., 2024. Mechanical characterization and strain analysis applied to the heat treatment of wood materials, by means of digital image correlation. BioResources 19(2): 3010. Doi: 10.15376/biores.19.2.3010-3030
  • Berlyn, P.G., Miksche, J., 1976. Botanical Microtechnique and Cytochemystry. The Iowa State University Press, Ames, Iowa
  • Bozlar, T., Gerçek, V., Yılmaz, S., Usta, A., 2014. Kızılağaç Plantasyonlarında Odunun Anatomik Özellikleri Üzerine Yetişme Ortamının Etkileri. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, 22-24 Ekim, Isparta
  • Boztoprak, H., Ergün, M. E, 2017. Yapraklı ağaçlarda trahe ve liflerin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 6(2): 87-96
  • Broda M., Carmen-Mihaela P., 2019. Natural decay of archaeological oak wood versus artificial degradation processes-An FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 209: 280-287. Doi: 10.1016/j.saa.2018.10.057
  • Brodin, I, Sjöholm, E., Gallerstedt, G., 2010. The behavior of kraft lignin during thermal treatment. J. Anal. Appl. Pyrolysis 87:70-77. Doi: 10.1016/j.jaap.2009.10.005
  • Bruno, M. R., 2023. Variability and chemical composition of the extractive content of woody residues from three European orchard species: Apricot (Prunus armeniaca L.), olive (Olea europea L.), and orange trees (Citrus sinensis L.). JSFA Reports 3(2): 82-97. Doi: 10.1002/jsf2.99
  • Bruno, M. R., Russo, D., Faraone, I., D'Auria, M., Milella, L., Todaro, L., 2021. Orchard biomass residues: Chemical composition, biological activity and wood characterization of apricot tree (Prunus armeniaca L.). Biofuels, Bioproducts and Biorefining 15(2): 377-391. Doi: 10.1002/bbb.2178
  • Carlquist, S., 1975. Ecological Strategies of Xylem Evolution. Berkeley University, California Press.
  • Clair, B., Thibaut, B., 2014. Physical and Mechanical Properties of Reaction Wood. The Biology of Reaction Wood. Springer Series in Wood Science. Springe: Berlin/Heidelberg, Germany. 249p, ISBN 978-3-642-10813-6
  • Çavuş, V., 2020. Determination of some physical and mechanical properties of apricot wood (Prunus armeniaca L.). Bartın Orman Fakültesi Dergisi 22(2): 457-464. Doi: 10.24011/barofd.729707
  • Demirbaş, A., 2001. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion and Management, 42(11): 1357-1378. Doi:10.1016/S0196-8904(00)00137-0
  • El Kayal, W., Chamas, Z., El-Sharkawy, I., Subramanian, J., 2021. Comparative anatomical responses of tolerant and susceptible European plum varieties to black knot disease. Plant Disease 105(10): 3244-3249. Doi: 10.1094/PDIS-07-20-1626-RE
  • Ercişli, S., Ağar, G., Yıldırım, N., Eşitken, A., Orhan, E., 2009. Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Romanian Biotechnological Letters 14(4): 4582-4588
  • Ergün, H., 2019. Yapraklı ve iğne yapraklı ağaçlarda homojen öz ışınların morfolojik işlemlerle belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 7(1): 52-59. Doi: 10.21923/jesd.463819
  • FAO. 2015. Fact and figures: Agricultural production. Food and agriculture organization of the united nations, Rome, http://faostat.fao.org/site/339/ default.aspx (Ziyaret Tarihi: 22.01.2025).
  • FAO. 2024. Food and Agriculture Organization (FAO) of the United Nations. faostat.fao.org/site/339/default.aspx (Ziyaret tarihi: 22.01.2025)
  • Gençer, A., Özgül, U., Onat, S. M., Gündüz, G., Yaman, B., Yazıcı, H., 2018. Chemical and morphological properties of apricot wood (Prunus armeniaca L.) and fruit endocarp. Journal of Bartın Faculty of Forestry 20(2): 205-209. Doi: 10.24011/barofd.412958
  • Gritsch, C., Wan, Y., Mitchell, R. A., Shewry, P. R., Hanley, S. J., Karp, A., 2015. G-fibre cell wall development in willow stems during tension wood induction. Journal of Experimental Botany 66(20): 6447-6459. Doi: 10.1093/jxb/erv358
  • Gülsoy, S. K., 2021. A Literature Review on the Wood Fiber Morphology of Fruit Trees. Şu eserde: Research and Reviews in Agriculture, Forestry and Aquaculture Sciences-I, s. 103-130
  • Gündüz, G., Yaman, B., Özden, S., Dönmez, S. C., 2013. Anatomy of wooden core of Ottoman composite archery bows. Sains Malaysiana 42(5): 547-552
  • Hacıseferoğulları, H., Gezer, I., Özcan, M. M., Asma, B., 2007. Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering 79(1): 364-373. Doi: 10.1016/j.jfoodeng.2006.02.003
  • Hamed, S. A., Ali, M. F., El Hadidi, N. M., 2012. Using SEM in Monitoring in Archaeological Wood: A review. Şu eserde: Current microscopy contributions to advances in science and technology. Badajoz: Formatex Research Center, Spain, 1077-1084
  • Ihnát, V., Fišerová, M., Opálená, E., Russ, A., Boháček, Š., 2021. Chemical composition and fibre characteristics of branch wood of selected hardwood species. Acta Facultatis Xylologiae Zvolen res Publica Slovaca 63(2): 17-30. Doi: 10.17423/afx.2021.63.2.02
  • Imren, E. 2022. Effect of weathering conditions on wood surface roughness: Optimal parameters determined via Taguchi analysis. BioResources 17(4): 6668.
  • Janković, B., Manić, N., Dodevski, V., Radojević, M., Stojiljković, D., 2020. Kinetic study of oxy-combustion of plane tree (Platanus orientalis) seeds (PTS) in O2/ Ar atmosphere. J Therm Anal Calorim142:953–976. Doi: 10. 1007/ s10973- 019- 09154-z
  • Jiang, F., Zhang, J., Wang, S., Yang, L., Luo, Y., Gao, S., Zhang, M., Wu, S., Hu, S. Sun, H., Wang, Y., 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Horticulture Research 6(128): 1-12. Doi: 10.1038/s41438-019-0215-6
  • Kumar, S., Gupta, A., Tahseen, A. M., Rastogi, A., 2024. A review of phytochemical and pharmacological action of Prunus armeniaca. International Journal of Pharmacognosy and Life Science 5(1): 107-115. Doi: 10.33545/27072827.2024.v5.i1b.115
  • Lee, H. H., Ahn, J. H., Kwon, A. R., Lee, E. S., Kwak, J. H., Min, Y. H., 2014. Chemical composition and antimicrobial activity of the essential oil of apricot seed. Phytotherapy research 28(12): 1867-1872. Doi: 10.1002/ptr.5219
  • Mammoliti, A., Cataldo, M. F., Papandrea, S. F., Proto, A. R., 2024. Mechanical properties of branch and stem wood for two Mediterranean cultivars of olive tree. Journal of Wood Science 70(1): 40. Doi: 10.1186/s10086-024-02153-1
  • Maria, Ş, F., Botu, I., 2016. Observations on some anatomical elements of annual branches, in order to establish differences between species of the genus Prunus. Agriculture - Science and Practice 3- 4: 99-100
  • Mészáros, E., Jakab, E., Várhegyi, G., 2007. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. Journal of Analytical and Applied Pyrolysis 79(1-2): 61-70. Doi:10.1016/j.jaap.2006.12.007
  • MGM. 2025. Meteoroloji Genel Müdürlüğü. mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx (Ziyaret tarihi: 03.02.2025)
  • Mishnaevski, L.J., Qing, H., 2008. Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Computational Materials Science 44(2): 363-370. Doi: 10.1016/j.commatsci.2008.03.043
  • Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T., Sundberg, B., Mellerowicz, E.J., 2007. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar - a glimpse into the mechanism of the balancing act of trees. Plant and Cell Physiology 48:843-855. Doi: 10.1093/pcp/pcm055
  • Noshiro, S., Suzuki, M., 2001. Ontogenetic wood anatomy of tree and subtree species of Nepa- lese Rhododendron (Ericaceae) and characterization of shrub species. American Journal of Botany 88: 560-569. Doi: 10.2307/2657054
  • Okai, R., Boateng, O., 2007. Analysis of sawn lumber production from logging residues of branchwood of Aningeria robusta and Termina liaivorensis. European Journal of Forest Research 126(3): 385-390. Doi: 10.1007/s10342-006-0157-z.
  • Olvera, C. P. P., Aguirre, M. M., Romero, J. C., Pacheco, L., 2008. Wood anatomy of five species of the family Rosaceae. Madera y Bosques 14(1): 81-105
  • Ortega-Vidal, J., Mut-Salud, N., De La Torre, J.M., Altarejos, J., Salido, S., 2024. Chemical characterization of pruning wood extracts from six Japanese plum (Prunus salicina Lindl.) cultivars and their antitumor activity. Molecules 29(16): 3887. Doi: 10.3390/molecules29163887
  • Ortega-Vidal, J., Ruiz‐Martos, L., Salido, S., Altarejos, J., 2023. Proanthocyanidins in pruning wood extracts of four European plum (Prunus domestica L.) cultivars and their hLDHA inhibitory activity. Chemistry & Biodiversity 20(5): e202200931. Doi: 10.1002/cbdv.202200931
  • Passialis C.N, Grigoriou A. H., 1999. Technical properties of branch-wood of apple, peach, pear, apricot and cherry fruit trees. Holz als Roh-und Werkstoff 57(1):41-4
  • Romero-García, J. M., Sanchez, A., Rendón-Acosta, G., Martínez-Patiño, J. C., Ruiz, E., Magaña, G., Castro, E., 2016. An olive tree pruning biorefinery for co-producing high value-added bioproducts and biofuels: Economic and energy efficiency analysis. BioEnergy Research 9: 1070-1086. Doi: 10.1007/s12155-016-9786-3
  • Rowell, R.M., 2013. Handbook of Wood Chemistry and Wood Composites. 2nd ed. Taylor & Francis Group, USA: CRC Press.
  • Saka, S., 1993. Structure and Chemical Composition Of Wood as A Natural Compositematerial. Şu eserde: Recent Research On Wood And Wood-Based Materials: Current Japanese Materials Research, Vol. 11. Amsterdam, The Netherlands: Elsevier, p. 1-20
  • Shmulsky, R., Jones, P.D., 2011. Forest Products and Wood Science an Introduction. Sixth Edition, John Wiley and Sons Ltd. Publisher, UK
  • Tajik, M., Kiaei, M., Torshizi, H. J., 2015. Apricot wood- A potential source of fibrous raw material for paper industry. Comptes Rendus de l’Académie Bulgare des Sciences 68: 329-336
  • Thurner, F., Mann, U., 1981. Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development 20(3): 482-488
  • Trieu, N. M., ve Thinh, N. T., 2023. A novel method in wood identification based on anatomical image using hybrid model. Computer Systems Science and Engineering 47(2). Doi: 10.32604/csse.2023.040030
  • Tutuş, A., Çiçekler, M., Ayaz, A., 2016. Kayısı (Prunus armeniaca L.) odunu yongalarının kâğıt hamuru ve kâğıt üretiminde değerlendirilmesi. Turkish Journal of Forestry 17(1): 61-67. Doi: 10.18182/tjf.29700
  • Van Wesenbeeck, B. K., Wolters, G., Antolínez, J. A., Kalloe, S., Hofland, B., De Boer, W., Çete, C., Bouma, T. J., 2022. Woods versus waves: Wave attenuation through non-uniform forests under extreme conditions. Scientifc Reports 12:1884. Doi: 10.1038/s41598-022-05753-3
  • Vane, C. H., Drage, T. C., Snape, C. E., Stephenson, M. H., Foster, C., 2005. Decay of cultivated apricot wood (Prunus armeniaca) by the ascomycete Hypocrea sulphurea, using solid state 13C NMR and off-line TMAH thermochemolysis with GC–MS. International Biodeterioration & Biodegradation 55(3): 175-185. Doi: 10.1016/j.ibiod.2004.11.004
  • Van Rooij, A., Badel, E., Barczi, J. F., Caraglio, Y., Almeras, T., Gril, J., 2023. Modelling the growth stress in tree branches: Eccentric growth vs. reaction wood. Peer Community Journal 3.
  • Vitázek, I., Šotnar, M., Hrehová, S., Darnadyová, K., Mareček, J., 2021. Isothermal kinetic analysis of the thermal decomposition of wood chips from an apple tree. Processes 9(2): 195.
  • Von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, K., Carrer, M., 2016. Quantitative wood anatomy-Practical guidelines. Frontiers in Plant Science, 7: 781. Doi: 10.3389/fpls.2016.00781
  • Yıldız, S., Yıldız, U. C., Tomak, E. D., 2011. The effects of natural weathering on the properties of heat-treated alder wood. BioResources 6(3).
  • Willig, G., Brunissen, F., Brunois, F., Godon, B., Magro, C., Monteux, C., Peyrot, C., Ioannou, I., 2022. Phenolic compounds extracted from cherry tree (Prunus avium) branches: Impact of the process on cosmetic properties. Antioxidants 11(5):813. Doi: 10.3390/antiox11050813
  • WSL, 2025. Swiss Federal Institute for Forest, Snow and Landscape Research. wsl.ch/land/products/dendro (Ziyaret tarihi: 27.2.2025)
  • Zaurov, D. E., Molnar, T. J., Eisenman, S. W., Ford, T. M., Mavlyanova, R. F., Capik, J. M., Reed Funk, C., Goffreda, J. C., 2013. Genetic resources of apricots (Prunus armeniaca L.) in Central Asia. HortScience 48(6): 681-691
  • Zheng, T., Li, P., Zhuo, X., Liu, W., Qiu, L., Li, L., Yuan, C., Sun, L., Zhang, Z., Wang, J., 2022. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytol. 235:141-156. Doi: 10.1111/nph.17894
  • Zimmermann, M.H., 1983. Xylem Structure and the Ascent of Sap. New York: Springer, Berlin- Heidelberg
  • Zor, M., Görgün, H. V., Vaziri, M., 2021. X-ışını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) kullanılarak kaynaklanan göknar, meşe ve kestane odununun yapısal karakterizasyonu. Bartın Orman Fakültesi Dergisi 23(3): 871-877. Doi: 10.24011/barofd.989542
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Ürünleri Kimyası
Bölüm Orman Ürünleri
Yazarlar

Göksu Şirin 0000-0003-1394-1697

Erken Görünüm Tarihi 8 Ağustos 2025
Yayımlanma Tarihi 9 Ekim 2025
Gönderilme Tarihi 5 Nisan 2025
Kabul Tarihi 7 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 2

Kaynak Göster

APA Şirin, G. (2025). Doğal şartlar etkisinde kalmış kayısı ağacı (Prunus armeniaca L.) dal odunlarının kullanım olanaklarının değerlendirilmesi. Ormancılık Araştırma Dergisi, 12(2), 144-153. https://doi.org/10.17568/ogmoad.1670466