INNER ROTOR BRUSHLESS DIRECT CURRENT MOTOR DESIGN AT LOW OPERATING VOLTAGE FOR HYBRID ELECTRIC VEHICLES
Yıl 2024,
, 1243 - 1256, 22.04.2024
Gökhan Erdoğan
,
Yener Taşkın
,
Hasan Tiryaki
Öz
In this study, it is aimed to redesign at a voltage below the dangerous limit (96 V) instead of a brushless direct current motor design with internal rotor at high operating voltage (300 V), which provides high power, high efficiency and high torque features for hybrid vehicles to be used in parallel structure. These design studies and finite element analysis have been done with ANSYS Electronics Dekstop software. Using the data of a light commercial vehicle selected as the test vehicle, the parameters (torque, power, speed) that will be needed during the application were calculated and motor designs were made taking these parameters into consideration. Electric motors used in electric and hybrid vehicles are generally produced at high operating voltages such as 400 V in order to meet the high power and torque requirement at high speeds. While it is beneficial that the current value passing through the line is low depending on the power drawn in the electric motors and drivers at high voltages, it causes the cost of the components used in the development of the motor driver and the risk of electric shock to increase. With this study, it was ensured that the component costs in the driver part of the brushless direct current motor to be produced were reduced and the operating voltages of the designed high voltage motor were reduced with the aim of keeping the DC bus voltage inside the vehicle below the dangerous lower limit.
Kaynakça
- Akar, M., Eker, M. ve Akın, F. (2021). BLDC motor design and application for light electric vehicle. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(2), 326-336. doi: http://dx.doi.org/10.35414/akufemubid.889877
- Çabuk, A.S., Sağlam, S. ve Üstün, Ö. (2019). Farklı sargı yapılarının tekerlek içi fırçasız doğru akım motorlarının verimi üzerindeki etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 1975-1986. doi: http://dx.doi.org/10.17341/gazimmfd.571649
- European Standards, (2016). “IEC 61140:2016,” 2016. Erişim adresi: https://www.en-standard.eu/iec-61140-2016-protection-against-electric-shock-common-aspects-for-installation-and-equipment/.
- Hanselman, D. (2006). Brushless permananent magnet motor design. Ohio: Magna Physics Publishing.
- Hendershot, J.R. ve Miller, T.J.E. (2010). Design of brushless permanent-magnet motors. Munich: Motor Design Books LLC.
- Husain, I. (2003). Electric and hybrid vehicles design fundamentals. New York: CRC Press.
- Infineon IRFP4310ZPBF (2022). Infineon IRFP4310ZPBF. Erişim adresi: https://www.infineon.com/dgdl/irfp4310zpbf.pdf?fileId=5546d462533600a40153562c469e200f.
- Sitapati, K. ve Krishnan R. (2001). Performance comparisons of radial and axial field. IEEE Transactions on Industry Applications, 37(5), 1219–1226. doi: http://dx.doi.org/10.1109/28.952495
- Kerem, A. (2021). Design implementation and speed estimation of three‑phase 2 kW out‑runner permanent magnet BLDC motor for ultralight electric vehicles. Electrical Engineering, 103(5), 2547–2559. doi: http://dx.doi.org/10.1007/s00202-021-01279-5.8
- Mukherjee, P. ve Sengupta, M. (2014). Design, analysis and fabrication of a brushless DC motor, 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems Konferansında Sunulmuş Bildiri, Mumbai.
- Nair, S.S., Nalakath, S. ve Dhinagar, S.J. (2011). Design and analysis of axial flux permanent magnet BLDC motor for automotive applications, 2011 IEEE International Electric Machines & Drives Conference Konferansında Sunulmuş Bildiri, Niagara Falls.
- Nugraha, Y.U., Yuniarto, M.N., Herizal, H., Asfani, D.A., Riawan, D.C. ve Wahyudi, M. (2018). Design analysis of axial flux permanent magnet BLDC motor 5 kW for electric scooter application, 2018 International Seminar on Intelligent Technology and Its Applications Seminerinde Sunulmuş Bildiri, Bali.
- Rahim, N.A., Ping, H.V. ve Tadjuddin, M. (2007). Design of axial flux permanent magnet brushless DC motor for direct drive of electric vehicle, 2007 IEEE Power Engineering Society General Meeting Konferansında Sunulmuş Bildiri, Tampa.
- Reif, K. ve Dietsche, K. (2014). Automotive handbook. Karlsruhe: Robert Bosch GmbH.
- Sanguesa, J. A., Torres-sanz, V., Garrido, P., Martinez, F. J. ve Marquez-barja, J. M. (2021). A review on electric vehicles : technologies and challenges. Smart Cities, 4(1), 372–404. doi: http://dx.doi.org/ 10.3390/smartcities4010022
- Saxena, A. (2014). Performance and cost comparison of PM BLDC motors for ceiling fan, 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems Konferansında Sunulmuş Bildiri, Mumbai.
- Shrivastava, N. ve Brahmin, A. (2014). Design of 3-phase BLDC motor for electric vehicle application by using finite element simulation. International Journal of Emerging Technology and Advanced Engineering, 4(1), 140-145. Erişim adresi: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=81afd8f342ed9d37762d24de4467550a31b4cc32
- Singh, V.K., Marwaha, S. ve Singh, A.K. (2017). Design and analysis of permanent magnet brushless DC motor for solar vehicle using ansys software. International Journal of Engineering and Technical Research, 6(4), 1215–1220. doi: http://dx.doi.org/10.17577/IJERTV6IS040795
- Thacher, E.F. (2015). A solar car primer a guide to the design and construction of solar-powered racing vehicles. New York: Springer.
- Tumbek, M. ve Kesler, S. (2019) Design and implementation of a low power outer-rotor line-start permanent-magnet synchronous motor for ultra-light electric vehicles. Energies, 12(16), 3174. doi: http://dx.doi.org/10.3390/en12163174
- Ustun, O., Yılmaz, M., Gökçe, C., Karakaya, U. ve Tuncay, R.N. (2009). Energy management method for solar race car design and application, 2009 IEEE International Electric Machines and Drives Conference Konferansında Sunulmuş Bildiri, Miami.
- Uygun, D. ve Solmaz, S. (2015). Design and dynamic study of a 6 kw external rotor permanent magnet brushless DC motor for electric drivetrains, 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives Konferansında Sunulmuş Bildiri, Riga.
- Vargo, B.O. (2013). Electric vehicles, primary energy sources and CO2 emissions: romanian case study. Energy, 49(1), 61-70. doi: http://dx.doi.org/10.1016/j.energy.2012.10.036
- Zarko, D., Ban, D. ve Lipo, T.A. (2009). Analytical solution for electromagnetic torque in surface permanent-magnet motors using conformal mapping. IEEE Transactions on Magnetics, 45(7), 2943–2954. doi: http://dx.doi.org/10.1109/TMAG.2009.2014689
- Zhao, L., Ham, C., Zheng, L., Wu, T., Sundaram, K., Kapat, J. ve Chow, L. (2007). A highly efficient 200 000 rpm permanent magnet motor system. IEEE Transactions on Magnetics, 43(6), 2528–2530. doi: http://dx.doi.org/10.1109/TMAG.2007.893523
HİBRİT ELEKTRİKLİ ARAÇLAR İÇİN DÜŞÜK ÇALIŞMA GERİLİMİNDE İÇ ROTORLU FIRÇASIZ DOĞRU AKIM MOTORU TASARIMI
Yıl 2024,
, 1243 - 1256, 22.04.2024
Gökhan Erdoğan
,
Yener Taşkın
,
Hasan Tiryaki
Öz
Bu çalışmada, hibrit araçlar için paralel yapıda kullanılabilmeye yönelik yüksek güç, yüksek verim ve yüksek moment özelliklerini sağlayan yüksek çalışma gerilimindeki (300 V) iç rotorlu fırçasız doğru akım motor tasarımı yerine tehlikeli sınırın altında kalan bir gerilimde (96 V) yeniden tasarlanması amaçlanmıştır. Bu tasarım çalışmaları ve sonlu eleman analizleri ANSYS Electronics Desktop paket programıyla yapılmıştır. Deney aracı olarak seçilen bir hafif ticari araç verileri kullanılarak uygulama esnasında ihtiyaç duyulacak olan parametreler (moment, güç, devir) hesaplanmış ve motor tasarımları bu parametreler göz önünde bulundurularak yapılmıştır. Elektrikli ve hibrit araçlarda kullanılan elektrik motorları, yüksek devirlerde yüksek güç ve moment ihtiyacını karşılayabilmek amacıyla genellikle 400 V gibi yüksek çalışma gerilimlerinde üretilmektedir. Yüksek gerilimlerdeki elektrik motor ve sürücülerinde çekilen güce bağlı olarak hat üzerinden geçen akım değerinin düşük olması fayda sağlarken, motor sürücünün geliştirilmesinde kullanılan komponentlerin maliyetlerinin ve elektrik çarpması riskinin artmasına neden olmaktadır. Bu çalışma ile üretilecek olan fırçasız doğru akım motorunun sürücü kısmındaki komponent maliyetlerinin azaltılması ve araç içerisindeki DC bara geriliminin tehlikeli alt sınırın altında olması amaçlanarak tasarımı yapılan yüksek gerilimdeki motorun çalışma gerilimlerinin düşürülmesi sağlanmıştır.
Destekleyen Kurum
TÜBİTAK MAG ve İÜC BAP
Teşekkür
Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 216M252 proje numaralı ve "İçten Yanmalı Motorlu Taşıtlar için Yakıt Verimliliğini Arttırıcı ve Yenilikçi Teknolojilerin Geliştirilmesi" başlıklı ARDEB 1003 projesi kapsamında desteklenmiş ve finanse edilmiştir.
Bu çalışma İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 33416 ve 52033 numaralı projeler ile desteklenmiş ve finanse edilmiştir.
Kaynakça
- Akar, M., Eker, M. ve Akın, F. (2021). BLDC motor design and application for light electric vehicle. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(2), 326-336. doi: http://dx.doi.org/10.35414/akufemubid.889877
- Çabuk, A.S., Sağlam, S. ve Üstün, Ö. (2019). Farklı sargı yapılarının tekerlek içi fırçasız doğru akım motorlarının verimi üzerindeki etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 1975-1986. doi: http://dx.doi.org/10.17341/gazimmfd.571649
- European Standards, (2016). “IEC 61140:2016,” 2016. Erişim adresi: https://www.en-standard.eu/iec-61140-2016-protection-against-electric-shock-common-aspects-for-installation-and-equipment/.
- Hanselman, D. (2006). Brushless permananent magnet motor design. Ohio: Magna Physics Publishing.
- Hendershot, J.R. ve Miller, T.J.E. (2010). Design of brushless permanent-magnet motors. Munich: Motor Design Books LLC.
- Husain, I. (2003). Electric and hybrid vehicles design fundamentals. New York: CRC Press.
- Infineon IRFP4310ZPBF (2022). Infineon IRFP4310ZPBF. Erişim adresi: https://www.infineon.com/dgdl/irfp4310zpbf.pdf?fileId=5546d462533600a40153562c469e200f.
- Sitapati, K. ve Krishnan R. (2001). Performance comparisons of radial and axial field. IEEE Transactions on Industry Applications, 37(5), 1219–1226. doi: http://dx.doi.org/10.1109/28.952495
- Kerem, A. (2021). Design implementation and speed estimation of three‑phase 2 kW out‑runner permanent magnet BLDC motor for ultralight electric vehicles. Electrical Engineering, 103(5), 2547–2559. doi: http://dx.doi.org/10.1007/s00202-021-01279-5.8
- Mukherjee, P. ve Sengupta, M. (2014). Design, analysis and fabrication of a brushless DC motor, 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems Konferansında Sunulmuş Bildiri, Mumbai.
- Nair, S.S., Nalakath, S. ve Dhinagar, S.J. (2011). Design and analysis of axial flux permanent magnet BLDC motor for automotive applications, 2011 IEEE International Electric Machines & Drives Conference Konferansında Sunulmuş Bildiri, Niagara Falls.
- Nugraha, Y.U., Yuniarto, M.N., Herizal, H., Asfani, D.A., Riawan, D.C. ve Wahyudi, M. (2018). Design analysis of axial flux permanent magnet BLDC motor 5 kW for electric scooter application, 2018 International Seminar on Intelligent Technology and Its Applications Seminerinde Sunulmuş Bildiri, Bali.
- Rahim, N.A., Ping, H.V. ve Tadjuddin, M. (2007). Design of axial flux permanent magnet brushless DC motor for direct drive of electric vehicle, 2007 IEEE Power Engineering Society General Meeting Konferansında Sunulmuş Bildiri, Tampa.
- Reif, K. ve Dietsche, K. (2014). Automotive handbook. Karlsruhe: Robert Bosch GmbH.
- Sanguesa, J. A., Torres-sanz, V., Garrido, P., Martinez, F. J. ve Marquez-barja, J. M. (2021). A review on electric vehicles : technologies and challenges. Smart Cities, 4(1), 372–404. doi: http://dx.doi.org/ 10.3390/smartcities4010022
- Saxena, A. (2014). Performance and cost comparison of PM BLDC motors for ceiling fan, 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems Konferansında Sunulmuş Bildiri, Mumbai.
- Shrivastava, N. ve Brahmin, A. (2014). Design of 3-phase BLDC motor for electric vehicle application by using finite element simulation. International Journal of Emerging Technology and Advanced Engineering, 4(1), 140-145. Erişim adresi: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=81afd8f342ed9d37762d24de4467550a31b4cc32
- Singh, V.K., Marwaha, S. ve Singh, A.K. (2017). Design and analysis of permanent magnet brushless DC motor for solar vehicle using ansys software. International Journal of Engineering and Technical Research, 6(4), 1215–1220. doi: http://dx.doi.org/10.17577/IJERTV6IS040795
- Thacher, E.F. (2015). A solar car primer a guide to the design and construction of solar-powered racing vehicles. New York: Springer.
- Tumbek, M. ve Kesler, S. (2019) Design and implementation of a low power outer-rotor line-start permanent-magnet synchronous motor for ultra-light electric vehicles. Energies, 12(16), 3174. doi: http://dx.doi.org/10.3390/en12163174
- Ustun, O., Yılmaz, M., Gökçe, C., Karakaya, U. ve Tuncay, R.N. (2009). Energy management method for solar race car design and application, 2009 IEEE International Electric Machines and Drives Conference Konferansında Sunulmuş Bildiri, Miami.
- Uygun, D. ve Solmaz, S. (2015). Design and dynamic study of a 6 kw external rotor permanent magnet brushless DC motor for electric drivetrains, 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives Konferansında Sunulmuş Bildiri, Riga.
- Vargo, B.O. (2013). Electric vehicles, primary energy sources and CO2 emissions: romanian case study. Energy, 49(1), 61-70. doi: http://dx.doi.org/10.1016/j.energy.2012.10.036
- Zarko, D., Ban, D. ve Lipo, T.A. (2009). Analytical solution for electromagnetic torque in surface permanent-magnet motors using conformal mapping. IEEE Transactions on Magnetics, 45(7), 2943–2954. doi: http://dx.doi.org/10.1109/TMAG.2009.2014689
- Zhao, L., Ham, C., Zheng, L., Wu, T., Sundaram, K., Kapat, J. ve Chow, L. (2007). A highly efficient 200 000 rpm permanent magnet motor system. IEEE Transactions on Magnetics, 43(6), 2528–2530. doi: http://dx.doi.org/10.1109/TMAG.2007.893523