Araştırma Makalesi
BibTex RIS Kaynak Göster

THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS

Yıl 2023, , 509 - 518, 29.04.2023
https://doi.org/10.31796/ogummf.1163400

Öz

Twisted tall building structures have recently been used as an architectural and structural form. On the other hand, there are very few studies on the behavior of twisted tall buildings under seismic and wind lateral loads. In this paper, the behavior of twisted tall buildings under seismic and wind-induced loads is investigated and compared with their prismatic counterpart. As a case study, a twisted building in Miami, Florida, is modified by twisting all floor levels with an angle of 3 degrees. Lateral wind forces and seismic forces are considered for this location and using ASCE 7-16. The 3-dimensional models are created using ETABS for analysis. The structural system of the building consists of a composite core system. The floor system consists of a post-tensioned concrete slab and the surrounding twisted columns are reinforced concrete. For the analysis of twisted tall building structures under lateral loads such as wind loads and seismic loads, the application of provisions and the behavior of prismatic and twisted tall building structures are discussed. In the study, it was found that the lateral stiffness of the twisted tall building under seismic loads is lower than that of the prismatic tall building.

Kaynakça

  • CTBUH. (2016). Tall building in numbers: Twisting tall buildings, CTBUH Journal, 3, 46-47. https://global.ctbuh.org/resources/papers/2848-Journal2016_IssueIII_TBIN.pdf
  • Günel, M.H., Ilgın, H.E. (2014). Tall Buildings: Structural system and Aerodynamic Form. London, Routledge.
  • Moon, K.S. (2012). Studies on various structural system design options for twisted tall buildings and their performances, The Structural Desing of Tall and Special Buildings, 23(5), 319-333. doi: https://doi.org/10.1002/tal.1038
  • Moon, K.S. (2015). Structural design and construction of complex-shaped tall buildings, International Journal of Engineering and Technology, 7(1), 30-35. Doi: https://doi.org/10.7763/IJET.2015.V7.761
  • Kim, J., Hong, S. (2011). Progressive collapse performance of irregular buildings, The Structural Design of Tall and Special Buildings, 20(6): 721-734. doi: https://doi.org/10.1002/tal.575
  • Lee, D.H., Kim, E.S., Kang, D.E., Kim, T. (2014). Seismic performance evaluation of twisted outtrigger system, Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_1757.pdf
  • Kwon, K., Kim, J. (2014). Progressive collapse and seismic performance of twisted diagrid buildings, International Journal of High-Rise Buildings, 3(3): 223-230.doi: https://doi.org/10.21022/IJHRB.2014.3.3.223
  • Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Kim, Y.C., Bandi, E.K. (2013). Aerodynamic and flow characteristics of tall buildings with various unconventional configurations, International Journal High-Rise Buildings, 2(3): 213-228. doi: https://doi.org/10.21022/IJHRB.2013.2.3.213
  • Bilgen, S. (2019). Investigation of aerodynamic and structural features of twisting tall buildings, Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University. https://etd.lib.metu.edu.tr/upload/12624385/index.pdf
  • Shabab, K., Irtaza, H., Agarwal, A. (2021). Comparative study of aerodynamic coefficients of prismatic and twisted tall buildings with various cross sections using CFD, Journal of Instution of Engineers, 102(3): 635-650. doi: https://doi.org/10.1007/s40032-021-00694-8
  • Vollers, K.J. (2015). High-rise buildings with twisted facades, 7th World Congress: Renewing the Urban Landscape,NewYork. https://global.ctbuh.org/resources/papers/download/1755-high-rise-buildings-with-twisted-facades.pdf
  • Taşkın, G.N. (2019). A Comparative Study in Alternative Structural System Layouts of Twisted Tall Buildings, Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University. http://etd.lib.metu.edu.tr/upload/12623410/index.pdf
  • URL-1, http://www.thenoblearchitect.com/evolution-tower/ [Accessed: 15.08.2022]
  • URL-2, http://www.wikiwand.com/tr/%C5%9Eanghay_Kulesi [Accessed: 15.08.2022]
  • URL-3, https://www.architectmagazine.com/design/buildings/cayan-tower-designed-by-skidmore-owings-merrill [Accessed: 15.08.2022]
  • URL-4, https://www.baminternational.com/en/projects/al-bidda-tower-doha-qatar [Accessed:15.08.2022]
  • URL-5, https://www.skyscrapercenter.com/building/grove-at-grand-bay-north-tower/14868 [Accessed:15.08.2022]
  • ETABS, V.18.1.1 (2020). Integrated analysis and design of building systems, Computers and Structures Inc., Berkeley, CA.
  • DeSimone V., Ramirez, L., Mohammad, A. (2015). Structural Challenges of Twisting Towers, CTBUH 2015 New York Conference, New York, 478-484. https://global.ctbuh.org/resources/papers/download/2501-structural-challenges-of-twisting-towers.pdf
  • URL-6,https://www.de-simone.com/projects/project/grove-at-grand-bay/ [Accessed: 15.08.2022]
  • URL-7, https://www.luxlifemiamiblog.com/condos/grove-at-grand-bay#!for-sale [Accessed: 15.08.2022]
  • Rong, Y., Thompson, E.M. (2012). A site response map of the continental U.S., 15 WCEE, Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2528.pdf
  • URL-8,https://hazards.atcouncil.org[Accessed: 15.08.2022]
  • ASCE/SEI 7-16, (2017). Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers.
  • Xiao, C., Tian, C., Chen, T., Jiang, D. (2012). Compression-bending behavior of steel plate reinforced concrete shear walls with high axial compression ratio, 15 WCEE,Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_1243.pdf
  • Niğdelioğlu, A. (2022). The behaviour of twisted tall building under Lateral Loads, Master Thesis, The Graduate School of Natural and Applied Sciences of Eskisehir Osmangazi University.

BURGULU YÜKSEK YAPILARIN YANAL YÜKLER ALTINDA DAVRANIŞI

Yıl 2023, , 509 - 518, 29.04.2023
https://doi.org/10.31796/ogummf.1163400

Öz

Burgulu yüksek bina yapıları son dönemlerde mimari ve yapısal bir form olarak kullanılmaktadır. Öte yandan, burgulu yüksek yapıların, deprem ve rüzgar yükleri altında yanal yükler olarak davranışına ilişkin çok az çalışma bulunmaktadır. Bu çalışmada, burgulu yüksek katlı yapıların deprem ve rüzgar yükleri altındaki davranışı incelenmiş ve emsali olan prizmatik yapı ile karşılaştırılmıştır. Bir vaka analizi olarak, Miami, Florida'da bulunan burgulu bir yüksek bina, tüm katları 3 derecelik bir açıyla döndürülerek düzenlenmiştir. Binanın bulunduğu konuma göre yanal kuvvetler rüzgar ve sismik kuvvetler dikkate alınmış ve ASCE 7-16 yönetmeliği kullanılmıştır. ETABS kullanılarak analiz için 3 boyutlu modeller oluşturulmuştur. Bina taşıyıcı sistemi, betonarme kolonlu kompozit bir çekirdek sisteme sahiptir. Döşeme sistemi ardgermeli betonarme döşemeye sahiptir ve burgulu kolonlar betonarmedir. Rüzgar yükleri ve sismik yükler gibi yanal yükler altında burgulu yüksek bina yapılarının analizi için, yönetmelik hükümlerinin uygulanması ve prizmatik, burgulu yüksek bina yapılarının davranışı kıyaslamalı olarak tartışılmıştır. Çalışmada, deprem yükleri altında burgulu yüksek binanın yanal rijitliğinin prizmatik yüksek binaya göre daha düşük olduğu tespit edilmiştir.

Kaynakça

  • CTBUH. (2016). Tall building in numbers: Twisting tall buildings, CTBUH Journal, 3, 46-47. https://global.ctbuh.org/resources/papers/2848-Journal2016_IssueIII_TBIN.pdf
  • Günel, M.H., Ilgın, H.E. (2014). Tall Buildings: Structural system and Aerodynamic Form. London, Routledge.
  • Moon, K.S. (2012). Studies on various structural system design options for twisted tall buildings and their performances, The Structural Desing of Tall and Special Buildings, 23(5), 319-333. doi: https://doi.org/10.1002/tal.1038
  • Moon, K.S. (2015). Structural design and construction of complex-shaped tall buildings, International Journal of Engineering and Technology, 7(1), 30-35. Doi: https://doi.org/10.7763/IJET.2015.V7.761
  • Kim, J., Hong, S. (2011). Progressive collapse performance of irregular buildings, The Structural Design of Tall and Special Buildings, 20(6): 721-734. doi: https://doi.org/10.1002/tal.575
  • Lee, D.H., Kim, E.S., Kang, D.E., Kim, T. (2014). Seismic performance evaluation of twisted outtrigger system, Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_1757.pdf
  • Kwon, K., Kim, J. (2014). Progressive collapse and seismic performance of twisted diagrid buildings, International Journal of High-Rise Buildings, 3(3): 223-230.doi: https://doi.org/10.21022/IJHRB.2014.3.3.223
  • Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Kim, Y.C., Bandi, E.K. (2013). Aerodynamic and flow characteristics of tall buildings with various unconventional configurations, International Journal High-Rise Buildings, 2(3): 213-228. doi: https://doi.org/10.21022/IJHRB.2013.2.3.213
  • Bilgen, S. (2019). Investigation of aerodynamic and structural features of twisting tall buildings, Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University. https://etd.lib.metu.edu.tr/upload/12624385/index.pdf
  • Shabab, K., Irtaza, H., Agarwal, A. (2021). Comparative study of aerodynamic coefficients of prismatic and twisted tall buildings with various cross sections using CFD, Journal of Instution of Engineers, 102(3): 635-650. doi: https://doi.org/10.1007/s40032-021-00694-8
  • Vollers, K.J. (2015). High-rise buildings with twisted facades, 7th World Congress: Renewing the Urban Landscape,NewYork. https://global.ctbuh.org/resources/papers/download/1755-high-rise-buildings-with-twisted-facades.pdf
  • Taşkın, G.N. (2019). A Comparative Study in Alternative Structural System Layouts of Twisted Tall Buildings, Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University. http://etd.lib.metu.edu.tr/upload/12623410/index.pdf
  • URL-1, http://www.thenoblearchitect.com/evolution-tower/ [Accessed: 15.08.2022]
  • URL-2, http://www.wikiwand.com/tr/%C5%9Eanghay_Kulesi [Accessed: 15.08.2022]
  • URL-3, https://www.architectmagazine.com/design/buildings/cayan-tower-designed-by-skidmore-owings-merrill [Accessed: 15.08.2022]
  • URL-4, https://www.baminternational.com/en/projects/al-bidda-tower-doha-qatar [Accessed:15.08.2022]
  • URL-5, https://www.skyscrapercenter.com/building/grove-at-grand-bay-north-tower/14868 [Accessed:15.08.2022]
  • ETABS, V.18.1.1 (2020). Integrated analysis and design of building systems, Computers and Structures Inc., Berkeley, CA.
  • DeSimone V., Ramirez, L., Mohammad, A. (2015). Structural Challenges of Twisting Towers, CTBUH 2015 New York Conference, New York, 478-484. https://global.ctbuh.org/resources/papers/download/2501-structural-challenges-of-twisting-towers.pdf
  • URL-6,https://www.de-simone.com/projects/project/grove-at-grand-bay/ [Accessed: 15.08.2022]
  • URL-7, https://www.luxlifemiamiblog.com/condos/grove-at-grand-bay#!for-sale [Accessed: 15.08.2022]
  • Rong, Y., Thompson, E.M. (2012). A site response map of the continental U.S., 15 WCEE, Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2528.pdf
  • URL-8,https://hazards.atcouncil.org[Accessed: 15.08.2022]
  • ASCE/SEI 7-16, (2017). Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers.
  • Xiao, C., Tian, C., Chen, T., Jiang, D. (2012). Compression-bending behavior of steel plate reinforced concrete shear walls with high axial compression ratio, 15 WCEE,Lisboa. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_1243.pdf
  • Niğdelioğlu, A. (2022). The behaviour of twisted tall building under Lateral Loads, Master Thesis, The Graduate School of Natural and Applied Sciences of Eskisehir Osmangazi University.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Abdullah Niğdelioğlu 0000-0001-5702-9056

Uğur Albayrak 0000-0001-7326-3213

Can Balkaya 0000-0002-0689-2746

Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 29 Nisan 2023
Kabul Tarihi 12 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Niğdelioğlu, A., Albayrak, U., & Balkaya, C. (2023). THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(1), 509-518. https://doi.org/10.31796/ogummf.1163400
AMA Niğdelioğlu A, Albayrak U, Balkaya C. THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS. ESOGÜ Müh Mim Fak Derg. Nisan 2023;31(1):509-518. doi:10.31796/ogummf.1163400
Chicago Niğdelioğlu, Abdullah, Uğur Albayrak, ve Can Balkaya. “THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, sy. 1 (Nisan 2023): 509-18. https://doi.org/10.31796/ogummf.1163400.
EndNote Niğdelioğlu A, Albayrak U, Balkaya C (01 Nisan 2023) THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 1 509–518.
IEEE A. Niğdelioğlu, U. Albayrak, ve C. Balkaya, “THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS”, ESOGÜ Müh Mim Fak Derg, c. 31, sy. 1, ss. 509–518, 2023, doi: 10.31796/ogummf.1163400.
ISNAD Niğdelioğlu, Abdullah vd. “THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/1 (Nisan 2023), 509-518. https://doi.org/10.31796/ogummf.1163400.
JAMA Niğdelioğlu A, Albayrak U, Balkaya C. THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS. ESOGÜ Müh Mim Fak Derg. 2023;31:509–518.
MLA Niğdelioğlu, Abdullah vd. “THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 31, sy. 1, 2023, ss. 509-18, doi:10.31796/ogummf.1163400.
Vancouver Niğdelioğlu A, Albayrak U, Balkaya C. THE BEHAVIOUR OF TWISTED TALL BUILDING STRUCTURES UNDER LATERAL LOADS. ESOGÜ Müh Mim Fak Derg. 2023;31(1):509-18.

20873 13565 13566 15461 13568  14913