Araştırma Makalesi
BibTex RIS Kaynak Göster

INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS

Yıl 2023, , 519 - 532, 29.04.2023
https://doi.org/10.31796/ogummf.1218376

Öz

Grinding is more than just crushing, it is also a process that causes a chemical reaction on the surface of the mineral. Water used in the grinding process significantly affects the galvanic interaction.
Different grinding conditions result in different pulp chemistries. This becomes especially important in sulfide flotation in terms of recovery and selectivity. There are limited studies examining the effects of dry and wet grinding prior to the flotation of sulfide minerals. This study compared the effects of wet and dry grinding on the flotation kinetics of complex Pb-Zn sulfide ore at P80 of 20 and 50 µm grind sizes. Results showed that dry grinding positively affected the sphalerite ore flotation compared to wet grinding in terms of recovery and grade in both galenite and sphalerite rougher flotation stages. Considering that the effect of dry grinding was due to the difference in pulp chemistry, the reasons were explored based on particle morphology, and pulp potentials.
The results showed that grinding the same ore under dry and wet conditions significantly affected the flotation performance. In light of the pulp potential measurements, it was determined that the reducing environment obtained in the wet grinding negatively affected the flotation performance, while the oxidizing environment formed during the dry grinding affected the flotation performance positively. This was attributed to the fact that galvanic interactions that occurred during wet grinding were significantly reduced during dry grinding. Hence, better galenite and sphalerite flotation was obtained following dry grinding.

Destekleyen Kurum

ESOGÜ BAP

Proje Numarası

2015-697 & 2017-1625

Teşekkür

The authors would like to thank ESOGÜ BAP “2015-697 & 2017-1625” for their financial support. The authors are also thankful to Prof. Dr. Uğur Ulusoy for his contribution to particle shape analysis.

Kaynakça

  • Allison, S.A., Goold, L.A., Nicol, M.J.& Granville, A. (1972). A determination of the products of reaction between various sulphide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potential. Metall. Trans. 3, 2613–2618.
  • Başaran, Ç. (2006). Kuru öğütmenin sülfürlü cevherlerin flotasyon performansına etkisi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye.
  • Bruckard, W.J., Sparrow, G.J. & Woodcock, J.T. (2011). A review of the effects of the grinding environment on the flotation of copper sulphides, International Journal of Mineral Processing, 100,1-13. http://dx.doi.org/10.1016/j.minpro.2011.04.001
  • Bulatovic, S., & Wyslouzil, D.M. (1985). Selection of reagent scheme to treat massive sulphide ores, Complex Sulphides, Processing of Ores, Concentrates and By-Products (Ed. By A.D. Zunkel, R.S. Boorman, A.E. Morris and R.J. Wesely), Metallurgical Society, 101-141.
  • Cases, J.M., de Donato, P., Kongolo, M., & Michot, L. (1989). The influence of grinding media on the adsorption and abstraction of potassium amyl xanthate on finely ground galena and pyrite, SME Preprint, SME, Littleton Colorado, 89-62.
  • Chapman, N. A., Shackleton, N. J., Malysiak, V., & O'Connor, C. T., (2013). Comparative study of the use of HPGR and conventional wet and dry grinding methods on the flotation of base metal sulphides and PGMs, The Journal of the Southern African Institute of Mining and Metallurgy, 113, 407-413.
  • Dávila-Pulido, G.I., Uribe-Salas, A., & Espinosa-Gómez, R., (2011). Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite, International Journal of Mineral Processing, 101(1-4), 71-74.
  • https://doi.org/10.1016/j.minpro.2011.07.012
  • Ek, C. S., (1985). Selective flotation of different complex pyritic ores, In Complex Sulfides, Zunkel A.D. and others (Eds.), TMS-AIME, Warrendale, 83-101.
  • Fahlstrom, P.H. (1974). Autogeneous grinding of base metal ores at Boliden Aktiebolag. CIM Bulletin, 78, 127-141.
  • Feng, D., & Aldrich, C. (2000). A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding, International Journal of Mineral Processing, 60 (2), 115-129. https://doi.org/10.1016/S0301-7516(00)00010-7
  • Franks, G. V., Forbes, E., Oshitani, J., & Batterham, R.J. (2015). Economic, water and energy evaluation of early rejection of gangue from copper ores using a dry sand fluidised bed separator, Int. J. Miner. Process., 137, 43–51.
  • https://doi.org/10.1016/j.minpro.2015.03.001.
  • Forssberg, E., & Subrahmanyam, T.V., (1993). Grinding, pulp chemistry and particle floatability, Proceedings of the XVIII International Mineral Processing Congress, Sydney, Vol. 1. The Australasian Institute of Mining and Metallurgy, Melbourne, 1-6.
  • Grano, S.R., Wong, P., Skinner, W., Johnson, N.W. & Ralston, J., (1994). The effect of autogenous and ball mill grinding on the chemical environment and flotation of the copper ore of Mount Isa Mines Limited, In III Latin American Congress on Froth Flotation (University of Concepcion Publ.), Concepcion, Chile, 351-388,
  • Grano, S., (2004). Private Communication, Ian Wark Institute. Uni.S. Aus., Adelaide, Australia.
  • Gunson A.J., Klein, B., Veiga, M. & Dunbar, S., (2012). Reducing mine water requirements, Journal of Cleaner Production, 21 (1), 71-82. https://doi.org/10.1016/j.jclepro.2011.08.020
  • Houot, R., & Duhamet, D. (1990). Importance of oxygenation of pulps in the flotation of sulphide ores, International Journal of Mineral Processing, 29, 77-87. https://doi.org/10.1016/0301-7516(90)90006-K
  • Kanda,Y., Abe, Y., Yamaguchi, M. & Endo, C. (1988). A Fundamental Study of Dry and Wet Grinding from The Viewpoint of Breaking Strength, Powder Technol.,56, 57-62, 10.5188/ijsmer.7.195
  • Kökkiliç, O., Langlois, R., & Waters, K.E. (2015). A design of experiments investigation into dry separation using a Knelson Concentrator,. Miner. Eng. 72, 73–86. https://doi.org/10.1016/j.mineng.2014.09.025
  • Koleini, S.M.J., Abdollahy, & M., Soltani, F. (2012). Wet and dry grinding methods effect on the flotation of Taknar Cu-Zn sulphide ore using a mixed collector, XXVI International Mineral Processing Congress (IMPC) 2012 Proceedings, New Delhi, India, 5113-5119. 10.13140/2.1.3508.9606
  • Learmont, M.E., & Iwasaki, I. (1984). Effect of grinding media on galena flotation, Minerals and Metallurgical Processing, 136.
  • Leppinen, J.O., Hintikka, V.V. & Kalapudas, R.P. (1998). Effect of electrochemical control on selective flotation of copper and zinc from complex ores, Minerals Engineering,11(1),39-51. https://doi.org/10.1016/S0892-6875(97)00137-4
  • Martin, C.J., McIvor, R.E., Finch, J.A., & Rao, S.R., (1992). Review of the effect of grinding media on flotation of sulfide minerals, Minerals Engineering 4(2), 121-132.
  • Nguyen, M.T., Ziemski, M. & Vink, S. (2014). Application of an exergy approach to understand energy demand of mine water management options, J. Clean. Prod. 84, 639–648. https://doi.org/10.1016/j.jclepro.2014.04.004
  • Nooshabadi, A.J. & Rao, K. H. (2014). Formation of hydrogen peroxide by sulphide minerals. Hydrometallurgy,141,82–8. https://doi.org/10.1016/j.hydromet.2013.10.011
  • Ocepek, D., Strazisar, J. & Kanduti-Sumej, B. (1990). Comminution and surface properties of minerals. In: Schonert, K. (Ed.), 7th European Symposium Comminution: Clausthal, Zellerfeld. BRD, 273–282.
  • Ogonowski, S., Wołosiewicz-Głab, M., Ogonowski, Z., Foszcz, D., & Pawełczyk, M. (2018). Comparison of wet and dry grinding in electromagnetic mill, Minerals,8(4). https://doi.org/10.3390/min8040138
  • Orumwense O. A., & Forssberg E. (1991). Surface and structural changes in wet ground minerals, Powder Technology,68,23-29. https://doi.org/10.1016/0032-5910(91)80060-V
  • Palm, N. A., Shackleton, N. J., Malysiak, V. & O'Connor, C.T. (2010). The effect of using different comminution procedures on the flotation of sphalerite, Minerals Engineering, 23, 1053-1057. https://doi.org/10.1016/j.mineng.2010.08.001
  • Petruk, W. (1986). The MP-SEM-IPS image analysis system, CANMET Report 87-IE (CANMET, Dept Energy, Mines and Resources, Canada), Ottawa.
  • Petruk, W. (1988). Automatic image analysis for mineral beneficiation, J. Metals, 40,29-31. https://doi.org/10.1007/BF03259018
  • Petruk, W. (1989). Short course on image analysis applied to mineralogy and earth sciences, Mineralogical Ass. Canada: Ottawa.
  • Ranängen, H., & Lindman, Å. (2017). A path towards sustainability for the Nordic mining industry, J. Clean. Prod.151,43–52. https://doi.org/10.1016/j.jclepro.2017.03.047
  • Rao, S.R., Moon, K.S., & Leja, J., (1976). Effect of grinding media on the surface reactios and flotation of heavy metal sulphides in flotation, M.C. Fuerstenau (Ed.), AIME Newyork, 509-527.
  • Routray, S & Swain R. (2019). Effect of chemical additives on reduction in Mill power during continuous grinding of chromite overburden materials in a tumbling Mill: a case study. J Inst Eng (India): 100:123–8.
  • http://dx.doi.org/10.1007/s40033-018-0170-7.
  • Ruonal, M. Heimala, S. & Jounela, S. (1997). Different aspects of using electrochemical potential measurements in mineral processing, International Journal of Mineral Processing, 51, 1–4, 97-110. https://doi.org/10.1016/S0301-7516(97)00023-9
  • Rivas-Perez, R., Sotomayor-Moriano, J. & Perez-Zuñiga, C.G., (2017). Adaptive Expert Generalized Predictive Multivariable Control of Seawater RO Desalination Plant for a Mineral Processing Facility, IFAC-PapersOnLine50,10244–10249. https://doi.org/10.1016/j.ifacol.2017.08.1284
  • Seke, M. D. (2005). The optimization of the selective flotation of galena and sphalerite at Rosh Pinah Mine, Doctoral thesis, University of Pretoria, Pretoria, South Africa.
  • Seke, M. D., & Pistorius, P.C. (2006). Effect of cuprous cyanide, dry and wet milling on the selective flotation of galena and sphalerite, Minerals Engineering,19,1-11. https://doi.org/10.1016/j.mineng.2005.03.005
  • SIP STRIM, (2019). Strategic Research and Innovation Roadmap for the Swedish Mining. Mineral Metal Prod. Ind.
  • Tokcan, I. (2017). Farklı öğütme koşullarının kurşun-çinko flotasyonu üzerindeki etkisi, Doktora tezi, Eskişehir Osmangazi Üniversitesi, Türkiye. http://hdl.handle.net/11684/1625
  • Tokcan, I & Bozkurt, M.M.V. (2021). Öğütme Şartlarının Galenit Flotasyonuna Etkisi, ESOGÜ Müh. Mim. Fak. Derg.,29(2),224-234. https://doi.org/10.31796/ogummf.936105
  • Thornton, E. (1973). The effect of grinding media on flotation selectivity, Canadian Mineral Processors Annual General Meeting, 223.
  • Wotruba, H., Hoberg, H., & Schneider, F.U.,(1991). Investigations on the separation of microlithe and zircon-the influence of particle shape on floatability, XVII International Mineral Processing Congress, Federal Republic of Germany, Dresden, 83-95.
  • Yekeler, M., Ulusoy, U., & Hiçyılmaz, C., (2004). Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability, Powder Technology, 140 (1), 68-78. https://doi.org/10.1016/j.powtec.2003.12.012
  • Yuan, X.M., Pålsson, & B.I., Forssberg, K.S.E., (1996a). Flotation of a complex sulfide ore, I. Cu/Zn selectivity control by adjusting pulp potential with different gases, International Journal of Mineral Processing, 46, 155–179. https://doi.org/10.1016/0301-7516(95)00094-1
  • Yuan, X.M., Pålsson, B.I., Forssberg, K.S.E., (1996b). Flotation of a complex sulfide ore, II. Influence of grinding environments on Cu/Zn sulfide selectivity and pulp chemistry, International Journal of Mineral Processing,46,181–204. https://doi.org/10.1016/0301-7516(95)00095-X

ÖĞÜTME KOŞULLARININ GALENİT-SFALERİT FLOTASYON KİNETİĞİ ÜZERİNDEKİ ETKİLERİ

Yıl 2023, , 519 - 532, 29.04.2023
https://doi.org/10.31796/ogummf.1218376

Öz

Öğütme, sadece kırmanın ötesinde, mineralin yüzeyinde kimyasal reaksiyona neden olan bir işlemdir. Öğütme işleminde kullanılan su, galvanik etkileşimi önemli ölçüde etkiler.
Farklı öğütme koşulları, farklı pülp kimyalarının oluşmasına neden olmaktadır. Bu durum özellikle sülfürlü mineral flotasyonunda verim ve seçimlilik açısından önem arz etmektedir. Flotasyon öncesi kuru ve yaş öğütmenin, sülfürlü mineral flotasyonu üzerindeki etkilerini inceleyen sınırlı sayıda çalışma bulunmaktadır. Bu çalışmada, yaş ve kuru öğütmenin P80 20 ve 50 µm tane boyutundaki kompleks sülfürlü galenit-sfalerit flotasyon kinetiği üzerindeki etkileri karşılaştırılmıştır. Sonuçlar, kuru öğütmenin hem galenit hem de sfalerit flotasyon devrelerinde verim ve tenör açısından yaş öğütmeye kıyasla flotasyon performansını olumlu etkilediğini göstermiştir. Gözlemlenen olumlu etkinin pülp kimyasındaki farklılıktan kaynaklandığı düşünülerek sonuçlar tane morfolojisi ve pülp potansiyeli özelinde araştırılmıştır. Sonuçlar, önceki çalışmada kullanılan 50 µm boyutundaki numunelerin galenit flotasyon devresinden elde edilen sonuçları ile karşılaştırmalı olarak verilerek tartışılmıştır.
Elde edilen bulgular, aynı cevherin farklı koşullar altında öğütülmesinin flotasyon performansı üzerinde önemli etkileri olduğunu göstermektedir. Pülpün elektrokimyasal ölçümleri ışığında yaş öğütmede oluşan indirgeyici ortamın flotasyon performansını düşürdüğü belirlenmiştir. Kuru öğütme işlemi sırasında yeni açığa çıkan mineral yüzeyleri su, pH veya Eh gibi kimyasal reaksiyonlardan etkilenmez ve böylece flotasyon verimi olumlu yönde etkilenir. Öğütme sırasında oluşan oksitleyici ortam nedeniyle galenit-sfalerit minerallerinin yüzebilirliği artmaktadır.

Proje Numarası

2015-697 & 2017-1625

Kaynakça

  • Allison, S.A., Goold, L.A., Nicol, M.J.& Granville, A. (1972). A determination of the products of reaction between various sulphide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potential. Metall. Trans. 3, 2613–2618.
  • Başaran, Ç. (2006). Kuru öğütmenin sülfürlü cevherlerin flotasyon performansına etkisi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye.
  • Bruckard, W.J., Sparrow, G.J. & Woodcock, J.T. (2011). A review of the effects of the grinding environment on the flotation of copper sulphides, International Journal of Mineral Processing, 100,1-13. http://dx.doi.org/10.1016/j.minpro.2011.04.001
  • Bulatovic, S., & Wyslouzil, D.M. (1985). Selection of reagent scheme to treat massive sulphide ores, Complex Sulphides, Processing of Ores, Concentrates and By-Products (Ed. By A.D. Zunkel, R.S. Boorman, A.E. Morris and R.J. Wesely), Metallurgical Society, 101-141.
  • Cases, J.M., de Donato, P., Kongolo, M., & Michot, L. (1989). The influence of grinding media on the adsorption and abstraction of potassium amyl xanthate on finely ground galena and pyrite, SME Preprint, SME, Littleton Colorado, 89-62.
  • Chapman, N. A., Shackleton, N. J., Malysiak, V., & O'Connor, C. T., (2013). Comparative study of the use of HPGR and conventional wet and dry grinding methods on the flotation of base metal sulphides and PGMs, The Journal of the Southern African Institute of Mining and Metallurgy, 113, 407-413.
  • Dávila-Pulido, G.I., Uribe-Salas, A., & Espinosa-Gómez, R., (2011). Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite, International Journal of Mineral Processing, 101(1-4), 71-74.
  • https://doi.org/10.1016/j.minpro.2011.07.012
  • Ek, C. S., (1985). Selective flotation of different complex pyritic ores, In Complex Sulfides, Zunkel A.D. and others (Eds.), TMS-AIME, Warrendale, 83-101.
  • Fahlstrom, P.H. (1974). Autogeneous grinding of base metal ores at Boliden Aktiebolag. CIM Bulletin, 78, 127-141.
  • Feng, D., & Aldrich, C. (2000). A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding, International Journal of Mineral Processing, 60 (2), 115-129. https://doi.org/10.1016/S0301-7516(00)00010-7
  • Franks, G. V., Forbes, E., Oshitani, J., & Batterham, R.J. (2015). Economic, water and energy evaluation of early rejection of gangue from copper ores using a dry sand fluidised bed separator, Int. J. Miner. Process., 137, 43–51.
  • https://doi.org/10.1016/j.minpro.2015.03.001.
  • Forssberg, E., & Subrahmanyam, T.V., (1993). Grinding, pulp chemistry and particle floatability, Proceedings of the XVIII International Mineral Processing Congress, Sydney, Vol. 1. The Australasian Institute of Mining and Metallurgy, Melbourne, 1-6.
  • Grano, S.R., Wong, P., Skinner, W., Johnson, N.W. & Ralston, J., (1994). The effect of autogenous and ball mill grinding on the chemical environment and flotation of the copper ore of Mount Isa Mines Limited, In III Latin American Congress on Froth Flotation (University of Concepcion Publ.), Concepcion, Chile, 351-388,
  • Grano, S., (2004). Private Communication, Ian Wark Institute. Uni.S. Aus., Adelaide, Australia.
  • Gunson A.J., Klein, B., Veiga, M. & Dunbar, S., (2012). Reducing mine water requirements, Journal of Cleaner Production, 21 (1), 71-82. https://doi.org/10.1016/j.jclepro.2011.08.020
  • Houot, R., & Duhamet, D. (1990). Importance of oxygenation of pulps in the flotation of sulphide ores, International Journal of Mineral Processing, 29, 77-87. https://doi.org/10.1016/0301-7516(90)90006-K
  • Kanda,Y., Abe, Y., Yamaguchi, M. & Endo, C. (1988). A Fundamental Study of Dry and Wet Grinding from The Viewpoint of Breaking Strength, Powder Technol.,56, 57-62, 10.5188/ijsmer.7.195
  • Kökkiliç, O., Langlois, R., & Waters, K.E. (2015). A design of experiments investigation into dry separation using a Knelson Concentrator,. Miner. Eng. 72, 73–86. https://doi.org/10.1016/j.mineng.2014.09.025
  • Koleini, S.M.J., Abdollahy, & M., Soltani, F. (2012). Wet and dry grinding methods effect on the flotation of Taknar Cu-Zn sulphide ore using a mixed collector, XXVI International Mineral Processing Congress (IMPC) 2012 Proceedings, New Delhi, India, 5113-5119. 10.13140/2.1.3508.9606
  • Learmont, M.E., & Iwasaki, I. (1984). Effect of grinding media on galena flotation, Minerals and Metallurgical Processing, 136.
  • Leppinen, J.O., Hintikka, V.V. & Kalapudas, R.P. (1998). Effect of electrochemical control on selective flotation of copper and zinc from complex ores, Minerals Engineering,11(1),39-51. https://doi.org/10.1016/S0892-6875(97)00137-4
  • Martin, C.J., McIvor, R.E., Finch, J.A., & Rao, S.R., (1992). Review of the effect of grinding media on flotation of sulfide minerals, Minerals Engineering 4(2), 121-132.
  • Nguyen, M.T., Ziemski, M. & Vink, S. (2014). Application of an exergy approach to understand energy demand of mine water management options, J. Clean. Prod. 84, 639–648. https://doi.org/10.1016/j.jclepro.2014.04.004
  • Nooshabadi, A.J. & Rao, K. H. (2014). Formation of hydrogen peroxide by sulphide minerals. Hydrometallurgy,141,82–8. https://doi.org/10.1016/j.hydromet.2013.10.011
  • Ocepek, D., Strazisar, J. & Kanduti-Sumej, B. (1990). Comminution and surface properties of minerals. In: Schonert, K. (Ed.), 7th European Symposium Comminution: Clausthal, Zellerfeld. BRD, 273–282.
  • Ogonowski, S., Wołosiewicz-Głab, M., Ogonowski, Z., Foszcz, D., & Pawełczyk, M. (2018). Comparison of wet and dry grinding in electromagnetic mill, Minerals,8(4). https://doi.org/10.3390/min8040138
  • Orumwense O. A., & Forssberg E. (1991). Surface and structural changes in wet ground minerals, Powder Technology,68,23-29. https://doi.org/10.1016/0032-5910(91)80060-V
  • Palm, N. A., Shackleton, N. J., Malysiak, V. & O'Connor, C.T. (2010). The effect of using different comminution procedures on the flotation of sphalerite, Minerals Engineering, 23, 1053-1057. https://doi.org/10.1016/j.mineng.2010.08.001
  • Petruk, W. (1986). The MP-SEM-IPS image analysis system, CANMET Report 87-IE (CANMET, Dept Energy, Mines and Resources, Canada), Ottawa.
  • Petruk, W. (1988). Automatic image analysis for mineral beneficiation, J. Metals, 40,29-31. https://doi.org/10.1007/BF03259018
  • Petruk, W. (1989). Short course on image analysis applied to mineralogy and earth sciences, Mineralogical Ass. Canada: Ottawa.
  • Ranängen, H., & Lindman, Å. (2017). A path towards sustainability for the Nordic mining industry, J. Clean. Prod.151,43–52. https://doi.org/10.1016/j.jclepro.2017.03.047
  • Rao, S.R., Moon, K.S., & Leja, J., (1976). Effect of grinding media on the surface reactios and flotation of heavy metal sulphides in flotation, M.C. Fuerstenau (Ed.), AIME Newyork, 509-527.
  • Routray, S & Swain R. (2019). Effect of chemical additives on reduction in Mill power during continuous grinding of chromite overburden materials in a tumbling Mill: a case study. J Inst Eng (India): 100:123–8.
  • http://dx.doi.org/10.1007/s40033-018-0170-7.
  • Ruonal, M. Heimala, S. & Jounela, S. (1997). Different aspects of using electrochemical potential measurements in mineral processing, International Journal of Mineral Processing, 51, 1–4, 97-110. https://doi.org/10.1016/S0301-7516(97)00023-9
  • Rivas-Perez, R., Sotomayor-Moriano, J. & Perez-Zuñiga, C.G., (2017). Adaptive Expert Generalized Predictive Multivariable Control of Seawater RO Desalination Plant for a Mineral Processing Facility, IFAC-PapersOnLine50,10244–10249. https://doi.org/10.1016/j.ifacol.2017.08.1284
  • Seke, M. D. (2005). The optimization of the selective flotation of galena and sphalerite at Rosh Pinah Mine, Doctoral thesis, University of Pretoria, Pretoria, South Africa.
  • Seke, M. D., & Pistorius, P.C. (2006). Effect of cuprous cyanide, dry and wet milling on the selective flotation of galena and sphalerite, Minerals Engineering,19,1-11. https://doi.org/10.1016/j.mineng.2005.03.005
  • SIP STRIM, (2019). Strategic Research and Innovation Roadmap for the Swedish Mining. Mineral Metal Prod. Ind.
  • Tokcan, I. (2017). Farklı öğütme koşullarının kurşun-çinko flotasyonu üzerindeki etkisi, Doktora tezi, Eskişehir Osmangazi Üniversitesi, Türkiye. http://hdl.handle.net/11684/1625
  • Tokcan, I & Bozkurt, M.M.V. (2021). Öğütme Şartlarının Galenit Flotasyonuna Etkisi, ESOGÜ Müh. Mim. Fak. Derg.,29(2),224-234. https://doi.org/10.31796/ogummf.936105
  • Thornton, E. (1973). The effect of grinding media on flotation selectivity, Canadian Mineral Processors Annual General Meeting, 223.
  • Wotruba, H., Hoberg, H., & Schneider, F.U.,(1991). Investigations on the separation of microlithe and zircon-the influence of particle shape on floatability, XVII International Mineral Processing Congress, Federal Republic of Germany, Dresden, 83-95.
  • Yekeler, M., Ulusoy, U., & Hiçyılmaz, C., (2004). Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability, Powder Technology, 140 (1), 68-78. https://doi.org/10.1016/j.powtec.2003.12.012
  • Yuan, X.M., Pålsson, & B.I., Forssberg, K.S.E., (1996a). Flotation of a complex sulfide ore, I. Cu/Zn selectivity control by adjusting pulp potential with different gases, International Journal of Mineral Processing, 46, 155–179. https://doi.org/10.1016/0301-7516(95)00094-1
  • Yuan, X.M., Pålsson, B.I., Forssberg, K.S.E., (1996b). Flotation of a complex sulfide ore, II. Influence of grinding environments on Cu/Zn sulfide selectivity and pulp chemistry, International Journal of Mineral Processing,46,181–204. https://doi.org/10.1016/0301-7516(95)00095-X
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Işıl Tokcan 0000-0003-3501-1335

Volkan Bozkurt 0000-0002-8617-5631

Proje Numarası 2015-697 & 2017-1625
Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 29 Nisan 2023
Kabul Tarihi 13 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Tokcan, I., & Bozkurt, V. (2023). INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(1), 519-532. https://doi.org/10.31796/ogummf.1218376
AMA Tokcan I, Bozkurt V. INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS. ESOGÜ Müh Mim Fak Derg. Nisan 2023;31(1):519-532. doi:10.31796/ogummf.1218376
Chicago Tokcan, Işıl, ve Volkan Bozkurt. “INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, sy. 1 (Nisan 2023): 519-32. https://doi.org/10.31796/ogummf.1218376.
EndNote Tokcan I, Bozkurt V (01 Nisan 2023) INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 1 519–532.
IEEE I. Tokcan ve V. Bozkurt, “INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS”, ESOGÜ Müh Mim Fak Derg, c. 31, sy. 1, ss. 519–532, 2023, doi: 10.31796/ogummf.1218376.
ISNAD Tokcan, Işıl - Bozkurt, Volkan. “INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/1 (Nisan 2023), 519-532. https://doi.org/10.31796/ogummf.1218376.
JAMA Tokcan I, Bozkurt V. INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS. ESOGÜ Müh Mim Fak Derg. 2023;31:519–532.
MLA Tokcan, Işıl ve Volkan Bozkurt. “INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 31, sy. 1, 2023, ss. 519-32, doi:10.31796/ogummf.1218376.
Vancouver Tokcan I, Bozkurt V. INFLUENCES OF GRINDING CONDITIONS ON GALENITE-SPHALERITE FLOTATION KINETICS. ESOGÜ Müh Mim Fak Derg. 2023;31(1):519-32.

20873 13565 13566 15461 13568  14913