Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE EFFECT OF SEAM INCLINATION ON LONGWALL METHOD WITH A PHYSICAL MODEL IN THICK COAL SEAMS CLOSE TO HORIZONTAL

Yıl 2023, , 705 - 717, 21.08.2023
https://doi.org/10.31796/ogummf.1264290

Öz

The longwall top coal caving production method is an effective underground production method in which the top coal caving process is in addition to the traditional longwall production method. The production method, which was first used in France and Yugoslavia in the 1950s, has started to be used effectively and efficiently all over the world after the 2000s. The method can be applied in two different ways by forming a face in the inclination of the coal seam or in the horizontal thickness. In this study, the longwall top coal caving production method, which is applied by creating a face on the slope of the seam, was investigated. In the research, the effect of the seam slope on the method efficiency in the longwall top coal caving production method applied in thick coal seams close to horizontal was investigated with a 2D physical model developed within the scope of the study. As a result of the physical model studies, a linear relationship was determined between the amount of top coal drawn and the inclination of the seam. On the other hand, it was determined that the rock mixture ratio increased up to a certain point depending on the increase in seam slope, and then started to decrease. In addition, it has been determined that the top coal flow boundaries are also oriented towards the face progression direction depending on the increase in the seam slope.

Kaynakça

  • Akçın, N. A. (1986). Batı Karadeniz taşkömürü havzasında hidrolik kömür madenciliğinin uygulanabilirliği, Türkiye 5. Kömür Kongresinde Sunulmuş Bildiri, Zonguldak.
  • BP. (2022) Statistical Review of World Energy 2022. Erişim adresi : https://www.bp.com.
  • Çelik, A. (2022). Eğimli kalın kömür damarlarında göçertmeli uzunayak üretim yöntem verimliliğinin fiziksel modelleme ile araştırılması (Doktora Tezi). Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Çelik, A. ve Özçelik Y. (2021). Investigation of the efficiency of longwall top coal caving method applied by forming a face in horizontal thickness of the seam in steeply inclined thick coal seams by using a physical model. International Journal of Rock Mechanics and Mining Sciences, 148, 104917. https://doi.org/10.1016/j.ijrmms.2021.104917.
  • Çelik, A. ve Özçelik Y. (2022). Investigation of the effects of coal seam slope and top coal drawn height on top coal recovery ratio in longwall top coal caving method applied in steep inclined thick coal seams. Arabian Journal of Geosciences, 15, 181. https://doi.org/10.1007/s12517-022-09466-9.
  • Çelik, A. ve Özçelik Y. (2023). Investigation of the effect of caving height on the efficiency of the longwall top coal caving production method applied in inclined and thick coal seams by physical modeling. International Journal of Rock Mechanics and Mining Sciences, 162, 105304. https://doi.org/10.1016/j.ijrmms.2022.105304.
  • Garcia, G. F. N., Camara, T. R. ve Torres, V. F. N. (2019). Optimization of room and pillar dimensions using automated numerical models. International Journal of Mining Science and Technology, 29, 797-801.
  • Guo, J., Feng, G., Wang, P., Qi, T., Zhang, X. ve Yan, Y. (2018). Roof strata behavior and support resistance determination for ultra-thick longwall top coal caving panel: A case study of the Tashan coal mine. Energies, 11, 1041. https://doi.org/10.3390/en11051041.
  • Guo, J., Ma, L., Wang, Y. ve Wang, F. (2017). Hanging wall pressure relief mechanism of horizontal section top-coal caving face and its application-a case study of the Urumqi coalfield, China. Energies, 10, 1371. https://doi.org/10.3390/en10091371.
  • Huang, B., Liu, C., Niu, H. ve Wang, J. (2008). Research on coal-gangue flow field character resulted from great cutting height fully mechanized. Journal of Mining and Safety Engineering, 25, 415-419.
  • Huang, B., Liu, C., Wu, F. ve Wang, Z. (2006). Experimental research on drawing top-coal with loose medium model under dead-unconsolidated sandstone roof. Journal of China University of Mining and Technology, 35, 351-355.
  • Kang, H., Lou, J., Gao, F., Yanga, J. ve Lia, J. (2018). A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining. International Journal of Coal Geology, 188, 25–36. https://doi.org/10.1016/j.coal.2018.01.013.
  • Kang, X., Yang, S., Zhan, P. ve Li, L. (2020). Simulation study of roof fracture pattern of a horizontal sublevel caving a steeply inclined thick coal seam. Advances in Civil Engineering, 2020, 8370634. https://doi.org/10.1155/2020/8370634.
  • Klishin, V. I. ve Klishin, S.V. (2010). Coal extraction from thick flat and steep beds. Journal of Mining Science, 46, 149-159. https://doi.org/10.1007/s10913-010-0020-y.
  • Kvapil, R. (1992). Sublevel Caving, SME Mining Engineering Handbook. Society for Mining Metallurgy and Exploration, Colorado.
  • Lang, D., Wu, X., Wu, Y., Lin, H. ve Luo, S. (2021). Boundary distribution of top-coal limit-equilibrium zone in fully mechanized caving in steeply dipping coal seams. Geomatics, Natural Hazards and Risk, 12, 2561-2589. https://doi.org/10.1080/19475705.2021.1969450.
  • Li, X., Wang, Z. ve Zhang, J. (2017). Stability of roof structure and its control in steeply inclined coal seams. International Journal of Mining Sciences and Technology, 27, 359-364. https://doi.org/10.1016/j.ijmst.2017.01.018.
  • Liang, Y., Li, L., Li, X., Wang, K., Chen, J., Sun, Z. ve Yang, X. (2019). Study on roof-coal caving characteristics with complicated structure by fully mechanized caving mining. Shock and Vibration, 2019, 6519213. https://doi.org/10.1155/2019/6519213.
  • Liu, C., Huang, B. ve Wu, F. (2009). Technical parameters of drawing and coal-gangue field movements of a fully mechanized large mining height top coal caving working face. Mining Science and Technology, 15, 549-555. https://doi.org/10.1016/S1674-5264(09)60103-4.
  • Liu, C., Wang, X. H., Liu, K., Wang, J., Guo, H. ve Sun, Z. Q. (2014). Occurence features of coalbed methane in inclined coal seam of Junggar basin, Xinjiang. Advanced Materials Research, 868, 696-699.
  • Mesutoğlu, M. (2019). Uzunayak tabanyolu galerisi tavan tabaka kontrolünde kullanılan kaya saplama ve demir bağ davranışlarının sayısal analizler ile belirlenmesi (Doktora Tezi). Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Konya.
  • Nicholas, D. E. (1993). Selection prosedure, SME Mining Engineering Handbook, Vol. 2, Society for Mining, Metallurgy, and Exploration.
  • Nieto, A. (2011). Selection methods, SME Mining Engineering Handbook, Vol. 3, Society for Mining, Metallurgy, and Exploration.
  • Öğretmen, S. (2003). Ömerler mekanize uzunayakta yürüyen tahkimatlar üzerindeki basınçların analizi (Yüksek Lisans Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Özfırat, M. K., Şimşir, F., Gönen, A. ve Pamukçu, C. (2008). Yürüyen tahkimat penceresinin kömür kaybına etkisi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 10(1), 15-26.
  • Quang, D. H. (2010). The effect of seam dip on the application of the longwall top coal caving method for inclined thick seams (PhD Thesis). The University of New South Wales, Sydney.
  • Shahani, N. M., Wan, Z., Zheng, X., Guichen, L., Liu, C., Siddiqui, F. I. ve Bin, G. (2020). Numerical modeling of longwall top coal caving method at Thar coalfield. Journal of Metals, Materials and Minerals, 30, 57-72.
  • Shevyakov, L. (1958). Mining of mineral deposits, Foreign Languages Publishing House, Moscow.
  • Singh, R. (2004). Staggered development of a thick coal seam for full height working in a single lift by the blasting gallery method. International Journal of Rock Mechanics and Mining Sciences, 41, 745-759. https://doi.org/10.1016/j.ijrmms.2004.01.008.
  • Singh, S. K. (2011). Extraction of thick coal seams (MSc Thesis). National Institute of Technology, Rourkela.
  • Song, Z. ve Konietzky, H. (2019). A particle-based numerical investigation on longwall top coal caving mining. Arabian Journal of Geosciences, 12, 556. https://doi.org/10.1007/s12517-019-4 743-z.
  • Song, Z., Konietzky, H. ve Herbst, M. (2020). Drawing mechanism of fractured top coal in longwall top coal caving. International Journal of Rock Mechanics and Mining Sciences, 130, 104329. https://doi.org/10.1016/j.ijrmms.2020.104329.
  • Tarakki, N. S., Quamruzzaman, C., Ahmed, M. T., Rahman, M., Alam, B. ve Rayhan C. (2016). Longwall top coal caving method for Barapukuria coal field, Dinajpur, Bangladesh. International Journal of Scientific and Engineering Research. 7, 285-293.
  • Tian, J., Chen, J. ve Liu, Y. (1979). Mining of thick seams in Chinese coal mines. Journal of Mines, Metals and Fuels, 27, 278-284.
  • Tien, J. (1998). Longwall caving in thick seams. Coal Age, 103, 52-54.
  • Ünver, B. (1997). Arakatlı göçertme uygulanan kalın kömür damarlarında işletme veriminin arttırılması, Türkiye 15. Madencilik Kongresinde Sunulmuş Bildiri, Ankara.
  • Wang, J. (2008) Study on coal rock caving laws and technological parameters of top coal caving of fully-mechanized mining with great cutting height for thick coal seam. (PhD Thesis). China University of Mining and Technology, Beijing.
  • Wang, J. ve Song, Z. (2015). Characteristic and control method of initial interface between coal and rock under fully mechanized loose top coal caving. Journal of Coal Science and Engineering, 47, 1-4.
  • Wang, J., Wei, W. ve Zhang, J. (2019a). Effect of the size distribution of granular top coal on the drawing mechanism in LTCC. Granular Matter, 21, 70. https://doi.org/10.1007/s10035-019-0923-5.
  • Wang, J., Wei, W. ve Zhang, J. (2019b) Theoretical description of drawing body shape in an inclined seam with longwall top coal caving mining. International Journal of Coal Science and Technology, 7(1), 182-195. https://doi.org/10.1007/s40789-019-00286-z.
  • Wang, J., Yang, S., Li, Y., Wei, L. ve Liu, H. (2014). Caving mechanisms of loose top-coal in longwall top-coal caving mining method. International Journal of Rock Mechanics and Mining Sciences, 71, 160–170. https://doi. org/10.1016/j.ijrmms.2014.04.024
  • Wang, J., Yang, S., Wei, W., Zhang, J. ve Song, Z. (2021). Drawing mechanisms for top coal in longwall top coal caving (LTCC): A review of two decades of literature. International Journal of Caol Science and Technology, 8, 1171-1196. https://doi.org/10.1007/s40789-021-00453-1.
  • Wang, P., Zhao, J., Chugh, Y. P. ve Wang, Z. (2017). A novel longwall mining layout approach for extraction of deep coal deposits. Minerals, 7, 60. https://doi.org/10.3390/min7040060.
  • Xu, B. (2004). Application of the longwall top coal caving system in Australian thick seam coal mines (MSc Thesis). The University of New South Wales, Sydney.
  • Yang, D., Guo, W. ve Tan, Y. (2019). Study on evolution characteristics of two-zone failure mode of the overburden strata under shallow buried thick seam mining. Advances in Civil Engineering, 2019, 9874769. https://doi.org/10.1155/2019/9874769.
  • Yang, Y., Ma, Y., Ji, C., Kang, T. ve Guo, X. (2018). Effect of mining thickness on overburden movement and underground pressure characteristics for extra thick coal seam by sublevel caving with high bottom cutting height. Advances in Civil Engineering, 2018, 6871820. https://doi.org/10.1155/2018/6871820.
  • Yaşıtlı, N. E. ve Ünver, B. (2005). 3D numerical modeling of longwall with top coal caving. International Journal of Rock Mechanics and Mining Sciences, 42, 219- 235. https://doi.org/10.1016/j.ijrmms.2004.08.007
  • Zhang, J., Zhao, Z. ve Gao, Y. (2011). Research on top coal caving techique in step and extra-thick coal seam. Procedia Earth and Planetary Science, 2, 145-149. https://doi.org/10.1016/j.proeps.2011.09.024.
  • Zhang, N., Liu, C. ve Pei, M. (2015). Effects of caving-mining ratio on the coal and waste rocks gangue flows and the amount of cyclically caved coal in fully mechanized mining od super-thick coal seams. International Journal of Mining Science and Technology, 25, 145-150. https://doi.org/10.1016/j.ijmst.2014.11.014
  • Zhang, Q., Yuan, R., Wang, S., Li, D., Li, H. ve Zhang, X. (2020). Optimizing simulation and analysis of automated top-coal drawing technique in extra-thick coal seams. Energies, 13, 232. https://doi.org/10.3390/en13010232.
  • Zhu, D., Chen, Z., Du, W., Zhang, L. ve Zhou, Z. (2018). Caving mechanisms of loose top-coal in longwall top-coal caving mining based on stochastic medium theory. Arabian Journal of Geosciences, 11, 621. https://doi.org/10.1007/s12517-018-3987-3.

YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI

Yıl 2023, , 705 - 717, 21.08.2023
https://doi.org/10.31796/ogummf.1264290

Öz

Göçertmeli uzunayak yöntemi geleneksel yönteme ek olarak tavan kömürü göçertme işleminin yapıldığı etkili bir yeraltı üretim yöntemidir. Yöntem kömür damarının eğiminde ya da yatay kalınlığında ayak oluşturulmak suretiyle iki farklı şekilde uygulanabilmektedir. Bu çalışmada damarın eğiminde ayak oluşturularak uygulanan göçertmeli uzunayak yöntemi araştırılmıştır. Yapılan araştırmada, yataya yakın kalın kömür damarlarında uygulanan göçertmeli uzunayak yönteminde damar eğiminin yöntem verimliliğine etkisi çalışma kapsamında geliştirilen 2 boyutlu fiziksel bir model ile incelenmiştir. Fiziksel model çalışmaları sonucunda, çekilen tavan kömürü miktarı ile damar eğimi arasında doğrusal bir ilişki tespit edilmiştir. Buna karşın kaya karışım oranının damar eğimindeki artışa bağlı olarak belirli bir noktaya kadar arttığı sonrasında ise azalmaya başladığı belirlenmiştir. Ayrıca tavan kömürü akma sınırlarının da damar eğimindeki artışa bağlı olarak ayak ilerleme yönüne doğru yöneldiği gözlemlenmiştir.

Kaynakça

  • Akçın, N. A. (1986). Batı Karadeniz taşkömürü havzasında hidrolik kömür madenciliğinin uygulanabilirliği, Türkiye 5. Kömür Kongresinde Sunulmuş Bildiri, Zonguldak.
  • BP. (2022) Statistical Review of World Energy 2022. Erişim adresi : https://www.bp.com.
  • Çelik, A. (2022). Eğimli kalın kömür damarlarında göçertmeli uzunayak üretim yöntem verimliliğinin fiziksel modelleme ile araştırılması (Doktora Tezi). Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Çelik, A. ve Özçelik Y. (2021). Investigation of the efficiency of longwall top coal caving method applied by forming a face in horizontal thickness of the seam in steeply inclined thick coal seams by using a physical model. International Journal of Rock Mechanics and Mining Sciences, 148, 104917. https://doi.org/10.1016/j.ijrmms.2021.104917.
  • Çelik, A. ve Özçelik Y. (2022). Investigation of the effects of coal seam slope and top coal drawn height on top coal recovery ratio in longwall top coal caving method applied in steep inclined thick coal seams. Arabian Journal of Geosciences, 15, 181. https://doi.org/10.1007/s12517-022-09466-9.
  • Çelik, A. ve Özçelik Y. (2023). Investigation of the effect of caving height on the efficiency of the longwall top coal caving production method applied in inclined and thick coal seams by physical modeling. International Journal of Rock Mechanics and Mining Sciences, 162, 105304. https://doi.org/10.1016/j.ijrmms.2022.105304.
  • Garcia, G. F. N., Camara, T. R. ve Torres, V. F. N. (2019). Optimization of room and pillar dimensions using automated numerical models. International Journal of Mining Science and Technology, 29, 797-801.
  • Guo, J., Feng, G., Wang, P., Qi, T., Zhang, X. ve Yan, Y. (2018). Roof strata behavior and support resistance determination for ultra-thick longwall top coal caving panel: A case study of the Tashan coal mine. Energies, 11, 1041. https://doi.org/10.3390/en11051041.
  • Guo, J., Ma, L., Wang, Y. ve Wang, F. (2017). Hanging wall pressure relief mechanism of horizontal section top-coal caving face and its application-a case study of the Urumqi coalfield, China. Energies, 10, 1371. https://doi.org/10.3390/en10091371.
  • Huang, B., Liu, C., Niu, H. ve Wang, J. (2008). Research on coal-gangue flow field character resulted from great cutting height fully mechanized. Journal of Mining and Safety Engineering, 25, 415-419.
  • Huang, B., Liu, C., Wu, F. ve Wang, Z. (2006). Experimental research on drawing top-coal with loose medium model under dead-unconsolidated sandstone roof. Journal of China University of Mining and Technology, 35, 351-355.
  • Kang, H., Lou, J., Gao, F., Yanga, J. ve Lia, J. (2018). A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining. International Journal of Coal Geology, 188, 25–36. https://doi.org/10.1016/j.coal.2018.01.013.
  • Kang, X., Yang, S., Zhan, P. ve Li, L. (2020). Simulation study of roof fracture pattern of a horizontal sublevel caving a steeply inclined thick coal seam. Advances in Civil Engineering, 2020, 8370634. https://doi.org/10.1155/2020/8370634.
  • Klishin, V. I. ve Klishin, S.V. (2010). Coal extraction from thick flat and steep beds. Journal of Mining Science, 46, 149-159. https://doi.org/10.1007/s10913-010-0020-y.
  • Kvapil, R. (1992). Sublevel Caving, SME Mining Engineering Handbook. Society for Mining Metallurgy and Exploration, Colorado.
  • Lang, D., Wu, X., Wu, Y., Lin, H. ve Luo, S. (2021). Boundary distribution of top-coal limit-equilibrium zone in fully mechanized caving in steeply dipping coal seams. Geomatics, Natural Hazards and Risk, 12, 2561-2589. https://doi.org/10.1080/19475705.2021.1969450.
  • Li, X., Wang, Z. ve Zhang, J. (2017). Stability of roof structure and its control in steeply inclined coal seams. International Journal of Mining Sciences and Technology, 27, 359-364. https://doi.org/10.1016/j.ijmst.2017.01.018.
  • Liang, Y., Li, L., Li, X., Wang, K., Chen, J., Sun, Z. ve Yang, X. (2019). Study on roof-coal caving characteristics with complicated structure by fully mechanized caving mining. Shock and Vibration, 2019, 6519213. https://doi.org/10.1155/2019/6519213.
  • Liu, C., Huang, B. ve Wu, F. (2009). Technical parameters of drawing and coal-gangue field movements of a fully mechanized large mining height top coal caving working face. Mining Science and Technology, 15, 549-555. https://doi.org/10.1016/S1674-5264(09)60103-4.
  • Liu, C., Wang, X. H., Liu, K., Wang, J., Guo, H. ve Sun, Z. Q. (2014). Occurence features of coalbed methane in inclined coal seam of Junggar basin, Xinjiang. Advanced Materials Research, 868, 696-699.
  • Mesutoğlu, M. (2019). Uzunayak tabanyolu galerisi tavan tabaka kontrolünde kullanılan kaya saplama ve demir bağ davranışlarının sayısal analizler ile belirlenmesi (Doktora Tezi). Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Konya.
  • Nicholas, D. E. (1993). Selection prosedure, SME Mining Engineering Handbook, Vol. 2, Society for Mining, Metallurgy, and Exploration.
  • Nieto, A. (2011). Selection methods, SME Mining Engineering Handbook, Vol. 3, Society for Mining, Metallurgy, and Exploration.
  • Öğretmen, S. (2003). Ömerler mekanize uzunayakta yürüyen tahkimatlar üzerindeki basınçların analizi (Yüksek Lisans Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Özfırat, M. K., Şimşir, F., Gönen, A. ve Pamukçu, C. (2008). Yürüyen tahkimat penceresinin kömür kaybına etkisi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 10(1), 15-26.
  • Quang, D. H. (2010). The effect of seam dip on the application of the longwall top coal caving method for inclined thick seams (PhD Thesis). The University of New South Wales, Sydney.
  • Shahani, N. M., Wan, Z., Zheng, X., Guichen, L., Liu, C., Siddiqui, F. I. ve Bin, G. (2020). Numerical modeling of longwall top coal caving method at Thar coalfield. Journal of Metals, Materials and Minerals, 30, 57-72.
  • Shevyakov, L. (1958). Mining of mineral deposits, Foreign Languages Publishing House, Moscow.
  • Singh, R. (2004). Staggered development of a thick coal seam for full height working in a single lift by the blasting gallery method. International Journal of Rock Mechanics and Mining Sciences, 41, 745-759. https://doi.org/10.1016/j.ijrmms.2004.01.008.
  • Singh, S. K. (2011). Extraction of thick coal seams (MSc Thesis). National Institute of Technology, Rourkela.
  • Song, Z. ve Konietzky, H. (2019). A particle-based numerical investigation on longwall top coal caving mining. Arabian Journal of Geosciences, 12, 556. https://doi.org/10.1007/s12517-019-4 743-z.
  • Song, Z., Konietzky, H. ve Herbst, M. (2020). Drawing mechanism of fractured top coal in longwall top coal caving. International Journal of Rock Mechanics and Mining Sciences, 130, 104329. https://doi.org/10.1016/j.ijrmms.2020.104329.
  • Tarakki, N. S., Quamruzzaman, C., Ahmed, M. T., Rahman, M., Alam, B. ve Rayhan C. (2016). Longwall top coal caving method for Barapukuria coal field, Dinajpur, Bangladesh. International Journal of Scientific and Engineering Research. 7, 285-293.
  • Tian, J., Chen, J. ve Liu, Y. (1979). Mining of thick seams in Chinese coal mines. Journal of Mines, Metals and Fuels, 27, 278-284.
  • Tien, J. (1998). Longwall caving in thick seams. Coal Age, 103, 52-54.
  • Ünver, B. (1997). Arakatlı göçertme uygulanan kalın kömür damarlarında işletme veriminin arttırılması, Türkiye 15. Madencilik Kongresinde Sunulmuş Bildiri, Ankara.
  • Wang, J. (2008) Study on coal rock caving laws and technological parameters of top coal caving of fully-mechanized mining with great cutting height for thick coal seam. (PhD Thesis). China University of Mining and Technology, Beijing.
  • Wang, J. ve Song, Z. (2015). Characteristic and control method of initial interface between coal and rock under fully mechanized loose top coal caving. Journal of Coal Science and Engineering, 47, 1-4.
  • Wang, J., Wei, W. ve Zhang, J. (2019a). Effect of the size distribution of granular top coal on the drawing mechanism in LTCC. Granular Matter, 21, 70. https://doi.org/10.1007/s10035-019-0923-5.
  • Wang, J., Wei, W. ve Zhang, J. (2019b) Theoretical description of drawing body shape in an inclined seam with longwall top coal caving mining. International Journal of Coal Science and Technology, 7(1), 182-195. https://doi.org/10.1007/s40789-019-00286-z.
  • Wang, J., Yang, S., Li, Y., Wei, L. ve Liu, H. (2014). Caving mechanisms of loose top-coal in longwall top-coal caving mining method. International Journal of Rock Mechanics and Mining Sciences, 71, 160–170. https://doi. org/10.1016/j.ijrmms.2014.04.024
  • Wang, J., Yang, S., Wei, W., Zhang, J. ve Song, Z. (2021). Drawing mechanisms for top coal in longwall top coal caving (LTCC): A review of two decades of literature. International Journal of Caol Science and Technology, 8, 1171-1196. https://doi.org/10.1007/s40789-021-00453-1.
  • Wang, P., Zhao, J., Chugh, Y. P. ve Wang, Z. (2017). A novel longwall mining layout approach for extraction of deep coal deposits. Minerals, 7, 60. https://doi.org/10.3390/min7040060.
  • Xu, B. (2004). Application of the longwall top coal caving system in Australian thick seam coal mines (MSc Thesis). The University of New South Wales, Sydney.
  • Yang, D., Guo, W. ve Tan, Y. (2019). Study on evolution characteristics of two-zone failure mode of the overburden strata under shallow buried thick seam mining. Advances in Civil Engineering, 2019, 9874769. https://doi.org/10.1155/2019/9874769.
  • Yang, Y., Ma, Y., Ji, C., Kang, T. ve Guo, X. (2018). Effect of mining thickness on overburden movement and underground pressure characteristics for extra thick coal seam by sublevel caving with high bottom cutting height. Advances in Civil Engineering, 2018, 6871820. https://doi.org/10.1155/2018/6871820.
  • Yaşıtlı, N. E. ve Ünver, B. (2005). 3D numerical modeling of longwall with top coal caving. International Journal of Rock Mechanics and Mining Sciences, 42, 219- 235. https://doi.org/10.1016/j.ijrmms.2004.08.007
  • Zhang, J., Zhao, Z. ve Gao, Y. (2011). Research on top coal caving techique in step and extra-thick coal seam. Procedia Earth and Planetary Science, 2, 145-149. https://doi.org/10.1016/j.proeps.2011.09.024.
  • Zhang, N., Liu, C. ve Pei, M. (2015). Effects of caving-mining ratio on the coal and waste rocks gangue flows and the amount of cyclically caved coal in fully mechanized mining od super-thick coal seams. International Journal of Mining Science and Technology, 25, 145-150. https://doi.org/10.1016/j.ijmst.2014.11.014
  • Zhang, Q., Yuan, R., Wang, S., Li, D., Li, H. ve Zhang, X. (2020). Optimizing simulation and analysis of automated top-coal drawing technique in extra-thick coal seams. Energies, 13, 232. https://doi.org/10.3390/en13010232.
  • Zhu, D., Chen, Z., Du, W., Zhang, L. ve Zhou, Z. (2018). Caving mechanisms of loose top-coal in longwall top-coal caving mining based on stochastic medium theory. Arabian Journal of Geosciences, 11, 621. https://doi.org/10.1007/s12517-018-3987-3.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Madencilik Yöntemleri ve Maden Sistem Analizi
Bölüm Araştırma Makaleleri
Yazarlar

Arif Çelik 0000-0002-2914-3369

Erken Görünüm Tarihi 21 Ağustos 2023
Yayımlanma Tarihi 21 Ağustos 2023
Kabul Tarihi 20 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çelik, A. (2023). YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(2), 705-717. https://doi.org/10.31796/ogummf.1264290
AMA Çelik A. YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. Ağustos 2023;31(2):705-717. doi:10.31796/ogummf.1264290
Chicago Çelik, Arif. “YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, sy. 2 (Ağustos 2023): 705-17. https://doi.org/10.31796/ogummf.1264290.
EndNote Çelik A (01 Ağustos 2023) YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 2 705–717.
IEEE A. Çelik, “YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI”, ESOGÜ Müh Mim Fak Derg, c. 31, sy. 2, ss. 705–717, 2023, doi: 10.31796/ogummf.1264290.
ISNAD Çelik, Arif. “YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/2 (Ağustos 2023), 705-717. https://doi.org/10.31796/ogummf.1264290.
JAMA Çelik A. YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. 2023;31:705–717.
MLA Çelik, Arif. “YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 31, sy. 2, 2023, ss. 705-17, doi:10.31796/ogummf.1264290.
Vancouver Çelik A. YATAYA YAKIN KALIN KÖMÜR DAMARLARINDA DAMAR EĞİMİNİN UZUNAYAK YÖNTEM VERİMLİLİĞİNE ETKİSİNİN FİZİKSEL MODEL İLE ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. 2023;31(2):705-17.

20873 13565 13566 15461 13568  14913