Araştırma Makalesi
BibTex RIS Kaynak Göster

BENZO[B]TİYOFEN BAZLI ORGANİK BİLEŞİKLERİN SENTEZİ VE ANOT KATALİZÖRÜ OLARAK HİDRAZİN ELEKTROOKSİDASYON PERFORMANSI

Yıl 2024, , 1356 - 1362, 12.08.2024
https://doi.org/10.31796/ogummf.1437602

Öz

Bu çalışmada Sonagashira bağlanma reaksiyonları ve elektrofilik siklizasyon reaksiyonları kullanılarak 3-iodo-2-(p-tolil)benzo[b]tiyofen (4C) sentezlendi. Elektrokimyasal ölçümler, 1 M KOH + 0,5M N2H4 çözeltisi ortamında, döngüsel voltametri (CV), kronoamperometri (CA), elektrokimyasal empedans spektroskopisi (EIS) gibi elektrokimyasal yöntemler kullanılarak gerçekleştirilmiştir. Elde edilen CV sonuçları, 4C katalizörünün en iyi akımın (15.40 mA/cm2) üretimini desteklediğini gösterdi ve EIS sonuçları, aynı türevle modifiye edilen elektrotun en düşük yük transfer direncine sahip olduğunu göstermektedir. Birlikte ele alındığında, bu sonuçlar 4C organik katalizörünün hidrazin (N2H4) yakıt hücrelerinde anot açısından verimli bir katalizör olarak kullanılabileceğini göstermektedir.

Kaynakça

  • Abdullah, S., Kamarudin, S.K., Hasran, U.A., Masdar, M.S. & Daud, W.R.W. (2014). Modeling and simulation of a direct ethanol fuel cell: An overview. Journal of Power Sources, 262, 401-406. doi: https://doi.org/10.1016/j.jpowsour.2014.03.105
  • Algso, M.A. & Kivrak, A. (2019). New strategy for the synthesis of 3-ethynyl-2-(thiophen-2-yl) benzo [b] thiophene derivatives. Chemical Papers, 73(4), 977-985. doi: https://doi.org/10.1007/s11696-018-0640-2
  • Caglar, A. & Kivrak, H. (2019). Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. International Journal of Hydrogen Energy, 44(23), 11734-11743. doi: https://doi.org/10.1016/j.ijhydene.2019.03.118
  • Cazetta, A.L., Zhang, T., Silva, T.L., Almeida, V.C. & Asefa, T. (2018). Bone char-derived metal-free N-and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Applied Catalysis B: Environmental, 225, 30-39. doi: https://doi.org/10.1016/j.apcatb.2017.11.050
  • Chen, L. X., Jiang, L. Y., Wang, A. J., Chen, Q. Y. & Feng, J. J. (2016). Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochimica Acta, 190, 872-878. doi: https://doi.org/10.1016/j.electacta.2015.12.151
  • Cho, C.H., Neuenswander, B., Lushington, G.H. & Larock, R.C. (2019). Solution-phase parallel synthesis of a multi-substituted benzo [b] thiophene library. Journal of combinatorial chemistry, 11(5), 900-906. doi: https://doi.org/10.1021/cc9000604
  • Clarke, T.M. & Durrant, J.R. (2010). Charge photogeneration in organic solar cells. Chemical reviews, 110(11), 6736-6767. doi: https://doi.org/10.1021/cr900271s
  • Demirbas, A., Sahin-Demirbas, A. & Hilal Demirbas, A. (2004). Global energy sources, energy usage, and future developments. Energy Sources, 26(3), 191-204. doi: https://doi.org/10.1080/00908310490256518
  • Ding, J., Kannan, P., Wang, P., Ji, S., Wang, H., Liu, Q., Gai, H., Liu, F. & Wang, R. (2019). Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells. Journal of Power Sources, 413, 209-215. doi: https://doi.org/10.1016/j.jpowsour.2018.12.050
  • Er, O.F., Ulas, B., Ozok, O., Kivrak, A. & Kivrak, H., (2021). Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene) malononitrile based remarkable organic catalyst towards hydrazine electrooxidation. Journal of Electroanalytical Chemistry, 888, 115218. doi: https://doi.org/10.1016/j.jelechem.2021.115218
  • Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P. & An, M. (2019). In situ grown nanosheet NiZn alloy on Ni foam for high performance hydrazine electrooxidation. Electrochimica Acta, 304, 275-281. doi: https://doi.org/10.1016/j.electacta.2019.03.017
  • Guo, S., He, Y., Murtaza, I., Tan, J., Pan, J., Guo, Y., Zhu, Y., He, Y. & Meng, H. (2018). Alkoxy substituted [1] benzothieno [3, 2-b][1] benzothiophene derivative with improved performance in organic thin film transistors. Organic Electronics, 56, 68-75. doi: https://doi.org/10.1016/j.orgel.2018.02.003
  • Huang, W.T. & Li, Y. (2015). Electrical characteristic fluctuation of 16-nm-gate trapezoidal bulk FinFET devices with fixed top-fin width induced by random discrete dopants. Nanoscale research letters, 10(1), .1-8. doi: https://doi.org/10.1007/s12633-023-02835-3
  • Keri RS, Chand K, Budagumpi S, Somappa SB, Patil SA, & Nagaraja BM. (2017). An overview of benzo[b]thiophene-based medicinal chemistry. Eur J Med Chem. 138:1002–1033. doi: https://doi.org/10.1016/j.ejmech.2017.07.038
  • Khoo, K.S., Chia, W.Y., Wang, K., Chang, C.K., Leong, H.Y., Maaris, M.N.B. & Show, P.L. (2021). Development of proton-exchange membrane fuel cell with ionic liquid technology. Science of The Total Environment, 793, 148705. doi: https://doi.org/10.1016/j.scitotenv.2021.148705
  • Kivrak, H., Can, M., Duru, H. & Sahin, O. (2014). Methanol electrooxidation study on mesoporous silica supported Pt–Co direct methanol fuel cell anode. International Journal of Chemical Reactor Engineering, 12(1), 369-375. doi: https://doi.org/10.1515/ijcre-2014-0051
  • Morimoto, M., Takagi, Y., Hioki, K., Nagasaka, T., Sotome, H., Ito, S., Miyasaka, H. & Irie, M. (2018). A turn-on mode fluorescent diarylethene: solvatochromism of fluorescence. Dyes and Pigments, 153, 144-149. doi: https://doi.org/10.1016/j.dyepig.2018.02.016
  • Park, M., Lee, T. & Kim, B.S. (2013). Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale, 5(24), 12255-12260. doi: https://doi.org/10.1039/C3NR03581F
  • Peng, M.Y.P., Chen, C., Peng, X. & Marefati, M. (2020). Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments, 39, 100713. doi: https://doi.org/10.1016/j.seta.2020.100713
  • Peumans, P., Yakimov, A. & Forrest, S.R. (2003). Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7), 3693-3723. doi: https://doi.org/10.1063/1.1534621
  • Sahin, O., Duzenli, D. & Kivrak, H. (2016). An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(5), 628-634. doi: https://doi.org/10.1080/15567036.2013.809391
  • Shi, X., Huo, X., Esan, O.C., An, L. & Zhao, T.S. (2021). Performance characteristics of a liquid e-fuel cell. Applied Energy, 297, 117145. doi: https://doi.org/10.1016/j.apenergy.2021.117145
  • Ozok, O., Kavak, E., Er, O.F., Kivrak, H. & Kivrak, A. (2020). Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation. International Journal of Hydrogen Energy, 45(53), 28706-28715. doi: https://doi.org/10.1016/j.ijhydene.2020.07.195
  • Ulas, B., Caglar, A., Sahin, O. & Kivrak, H. (2018). Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of colloid and interface science, 532, 47-57. doi: https://doi.org/10.1016/j.jcis.2018.07.120
  • Wang, W., Wang, Y., Liu, S., Yahia, M., Dong, Y. & Lei, Z. (2019). Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation. International Journal of Hydrogen Energy, 44(21), 10637-10645. doi: https://doi.org/10.1016/j.ijhydene.2019.03.005
  • Wang, S., Li, W. & Fooladi, H. (2021). Performance evaluation of a polygeneration system based on fuel cell technology and solar photovoltaic and use of waste heat. Sustainable Cities and Society, 72, 103055. doi: https://doi.org/10.1016/j.scs.2021.103055
  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C. & Adroher, X.C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied energy, 88(4), 981-1007. doi: https://doi.org/10.1016/j.apenerg.2010.09.030
  • Wang, Y., Wan, Y. & Zhang, D. (2010). Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochemistry Communications, 12(2), 187-190. doi: https://doi.org/10.1016/j.elecom.2009.11.019
  • Yang, F. & Forrest, S.R. (2008). Photocurrent generation in nanostructured organic solar cells. ACS nano, 2(5), 1022-1032. doi: https://doi.org/10.1021/nn700447t
  • Zhao, A., Sun, H., Chen, L., Huang, Y. & Lu, X. (2019). Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell. Materials Research Express, 6(8), 085533. doi: https://doi.org/10.1088/2053-1591/ab242f

SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST

Yıl 2024, , 1356 - 1362, 12.08.2024
https://doi.org/10.31796/ogummf.1437602

Öz

In this study, 3-iodo-2-(p-tolyl)benzo[b]thiophene (4C) is synthesized by using Sonagashira coupling reactions and electrophilic cyclization reactions. Electrochemical measurements have been performed using electrochemical methods such as cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) in the environment of 1 M KOH + 0.5M N2H4 solution. The CV results obtained showed that 4C catalyst promoted the generation of the best current (15.40 mA/cm2), and EIS results confirmed that electrode modifeed with the same derivative presented the lowest charge transfer resistance. Taken together, these results suggest that 4C organocatalyst could be used as an anode efficient catalyst in hydrazine (N2H4) fuel cells.

Kaynakça

  • Abdullah, S., Kamarudin, S.K., Hasran, U.A., Masdar, M.S. & Daud, W.R.W. (2014). Modeling and simulation of a direct ethanol fuel cell: An overview. Journal of Power Sources, 262, 401-406. doi: https://doi.org/10.1016/j.jpowsour.2014.03.105
  • Algso, M.A. & Kivrak, A. (2019). New strategy for the synthesis of 3-ethynyl-2-(thiophen-2-yl) benzo [b] thiophene derivatives. Chemical Papers, 73(4), 977-985. doi: https://doi.org/10.1007/s11696-018-0640-2
  • Caglar, A. & Kivrak, H. (2019). Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. International Journal of Hydrogen Energy, 44(23), 11734-11743. doi: https://doi.org/10.1016/j.ijhydene.2019.03.118
  • Cazetta, A.L., Zhang, T., Silva, T.L., Almeida, V.C. & Asefa, T. (2018). Bone char-derived metal-free N-and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Applied Catalysis B: Environmental, 225, 30-39. doi: https://doi.org/10.1016/j.apcatb.2017.11.050
  • Chen, L. X., Jiang, L. Y., Wang, A. J., Chen, Q. Y. & Feng, J. J. (2016). Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochimica Acta, 190, 872-878. doi: https://doi.org/10.1016/j.electacta.2015.12.151
  • Cho, C.H., Neuenswander, B., Lushington, G.H. & Larock, R.C. (2019). Solution-phase parallel synthesis of a multi-substituted benzo [b] thiophene library. Journal of combinatorial chemistry, 11(5), 900-906. doi: https://doi.org/10.1021/cc9000604
  • Clarke, T.M. & Durrant, J.R. (2010). Charge photogeneration in organic solar cells. Chemical reviews, 110(11), 6736-6767. doi: https://doi.org/10.1021/cr900271s
  • Demirbas, A., Sahin-Demirbas, A. & Hilal Demirbas, A. (2004). Global energy sources, energy usage, and future developments. Energy Sources, 26(3), 191-204. doi: https://doi.org/10.1080/00908310490256518
  • Ding, J., Kannan, P., Wang, P., Ji, S., Wang, H., Liu, Q., Gai, H., Liu, F. & Wang, R. (2019). Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells. Journal of Power Sources, 413, 209-215. doi: https://doi.org/10.1016/j.jpowsour.2018.12.050
  • Er, O.F., Ulas, B., Ozok, O., Kivrak, A. & Kivrak, H., (2021). Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene) malononitrile based remarkable organic catalyst towards hydrazine electrooxidation. Journal of Electroanalytical Chemistry, 888, 115218. doi: https://doi.org/10.1016/j.jelechem.2021.115218
  • Feng, Z., Li, D., Wang, L., Sun, Q., Lu, P., Xing, P. & An, M. (2019). In situ grown nanosheet NiZn alloy on Ni foam for high performance hydrazine electrooxidation. Electrochimica Acta, 304, 275-281. doi: https://doi.org/10.1016/j.electacta.2019.03.017
  • Guo, S., He, Y., Murtaza, I., Tan, J., Pan, J., Guo, Y., Zhu, Y., He, Y. & Meng, H. (2018). Alkoxy substituted [1] benzothieno [3, 2-b][1] benzothiophene derivative with improved performance in organic thin film transistors. Organic Electronics, 56, 68-75. doi: https://doi.org/10.1016/j.orgel.2018.02.003
  • Huang, W.T. & Li, Y. (2015). Electrical characteristic fluctuation of 16-nm-gate trapezoidal bulk FinFET devices with fixed top-fin width induced by random discrete dopants. Nanoscale research letters, 10(1), .1-8. doi: https://doi.org/10.1007/s12633-023-02835-3
  • Keri RS, Chand K, Budagumpi S, Somappa SB, Patil SA, & Nagaraja BM. (2017). An overview of benzo[b]thiophene-based medicinal chemistry. Eur J Med Chem. 138:1002–1033. doi: https://doi.org/10.1016/j.ejmech.2017.07.038
  • Khoo, K.S., Chia, W.Y., Wang, K., Chang, C.K., Leong, H.Y., Maaris, M.N.B. & Show, P.L. (2021). Development of proton-exchange membrane fuel cell with ionic liquid technology. Science of The Total Environment, 793, 148705. doi: https://doi.org/10.1016/j.scitotenv.2021.148705
  • Kivrak, H., Can, M., Duru, H. & Sahin, O. (2014). Methanol electrooxidation study on mesoporous silica supported Pt–Co direct methanol fuel cell anode. International Journal of Chemical Reactor Engineering, 12(1), 369-375. doi: https://doi.org/10.1515/ijcre-2014-0051
  • Morimoto, M., Takagi, Y., Hioki, K., Nagasaka, T., Sotome, H., Ito, S., Miyasaka, H. & Irie, M. (2018). A turn-on mode fluorescent diarylethene: solvatochromism of fluorescence. Dyes and Pigments, 153, 144-149. doi: https://doi.org/10.1016/j.dyepig.2018.02.016
  • Park, M., Lee, T. & Kim, B.S. (2013). Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale, 5(24), 12255-12260. doi: https://doi.org/10.1039/C3NR03581F
  • Peng, M.Y.P., Chen, C., Peng, X. & Marefati, M. (2020). Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments, 39, 100713. doi: https://doi.org/10.1016/j.seta.2020.100713
  • Peumans, P., Yakimov, A. & Forrest, S.R. (2003). Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7), 3693-3723. doi: https://doi.org/10.1063/1.1534621
  • Sahin, O., Duzenli, D. & Kivrak, H. (2016). An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(5), 628-634. doi: https://doi.org/10.1080/15567036.2013.809391
  • Shi, X., Huo, X., Esan, O.C., An, L. & Zhao, T.S. (2021). Performance characteristics of a liquid e-fuel cell. Applied Energy, 297, 117145. doi: https://doi.org/10.1016/j.apenergy.2021.117145
  • Ozok, O., Kavak, E., Er, O.F., Kivrak, H. & Kivrak, A. (2020). Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation. International Journal of Hydrogen Energy, 45(53), 28706-28715. doi: https://doi.org/10.1016/j.ijhydene.2020.07.195
  • Ulas, B., Caglar, A., Sahin, O. & Kivrak, H. (2018). Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of colloid and interface science, 532, 47-57. doi: https://doi.org/10.1016/j.jcis.2018.07.120
  • Wang, W., Wang, Y., Liu, S., Yahia, M., Dong, Y. & Lei, Z. (2019). Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation. International Journal of Hydrogen Energy, 44(21), 10637-10645. doi: https://doi.org/10.1016/j.ijhydene.2019.03.005
  • Wang, S., Li, W. & Fooladi, H. (2021). Performance evaluation of a polygeneration system based on fuel cell technology and solar photovoltaic and use of waste heat. Sustainable Cities and Society, 72, 103055. doi: https://doi.org/10.1016/j.scs.2021.103055
  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C. & Adroher, X.C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied energy, 88(4), 981-1007. doi: https://doi.org/10.1016/j.apenerg.2010.09.030
  • Wang, Y., Wan, Y. & Zhang, D. (2010). Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochemistry Communications, 12(2), 187-190. doi: https://doi.org/10.1016/j.elecom.2009.11.019
  • Yang, F. & Forrest, S.R. (2008). Photocurrent generation in nanostructured organic solar cells. ACS nano, 2(5), 1022-1032. doi: https://doi.org/10.1021/nn700447t
  • Zhao, A., Sun, H., Chen, L., Huang, Y. & Lu, X. (2019). Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell. Materials Research Express, 6(8), 085533. doi: https://doi.org/10.1088/2053-1591/ab242f
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrokimyasal Teknolojiler
Bölüm Araştırma Makaleleri
Yazarlar

Ömrüye Özok Arıcı 0000-0002-4164-8650

Şefika Kaya 0000-0001-8277-4365

Aykut Çağlar 0000-0002-0681-1096

Hilal Demir Kıvrak 0000-0001-8001-7854

Arif Kıvrak 0000-0003-4770-2686

Erken Görünüm Tarihi 6 Ağustos 2024
Yayımlanma Tarihi 12 Ağustos 2024
Gönderilme Tarihi 15 Şubat 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özok Arıcı, Ö., Kaya, Ş., Çağlar, A., Demir Kıvrak, H., vd. (2024). SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(2), 1356-1362. https://doi.org/10.31796/ogummf.1437602
AMA Özok Arıcı Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST. ESOGÜ Müh Mim Fak Derg. Ağustos 2024;32(2):1356-1362. doi:10.31796/ogummf.1437602
Chicago Özok Arıcı, Ömrüye, Şefika Kaya, Aykut Çağlar, Hilal Demir Kıvrak, ve Arif Kıvrak. “SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 2 (Ağustos 2024): 1356-62. https://doi.org/10.31796/ogummf.1437602.
EndNote Özok Arıcı Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A (01 Ağustos 2024) SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 2 1356–1362.
IEEE Ö. Özok Arıcı, Ş. Kaya, A. Çağlar, H. Demir Kıvrak, ve A. Kıvrak, “SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 2, ss. 1356–1362, 2024, doi: 10.31796/ogummf.1437602.
ISNAD Özok Arıcı, Ömrüye vd. “SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/2 (Ağustos 2024), 1356-1362. https://doi.org/10.31796/ogummf.1437602.
JAMA Özok Arıcı Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST. ESOGÜ Müh Mim Fak Derg. 2024;32:1356–1362.
MLA Özok Arıcı, Ömrüye vd. “SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 2, 2024, ss. 1356-62, doi:10.31796/ogummf.1437602.
Vancouver Özok Arıcı Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. SYNTHESIS OF BENZO[B]THIOPHENE-BASED ORGANIC COMPOUNDS AND THEIR HYDRAZINE ELECTROOXIDATION PERFORMANCE AS AN ANODE CATALYST. ESOGÜ Müh Mim Fak Derg. 2024;32(2):1356-62.

20873 13565 13566 15461 13568  14913