Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI KATALİZÖRLERİN BİYOBAZLI POLİ(PROPİLEN MALONAT) SENTEZİ ÜZERİNDEKİ ETKİSİ

Yıl 2025, Cilt: 33 Sayı: 3, 1906 - 1913, 19.12.2025
https://doi.org/10.31796/ogummf.1650522

Öz

Çevresel kaygılar ve ekonomik etkenler doğrultusunda, polimer üretiminde biyokütle kaynaklı yapı taşlarına olan ihtiyaç son yıllarda önemli ölçüde artmıştır. Özellikle biyo-bazlı plastikler, döngüsel ekonomiye geçişte çığır açan teknolojiler arasında en öncelikli konulardan biri olarak öne çıkmaktadır. Bu çalışmada, amaçlardan biri çeşitli esterleşme katalizörlerinin etkinliğini değerlendirmektir. Bu amaçla, 1,3-propandiol ve malonik asidi hammadde olarak kullanarak ve titanyum (IV) bütoksit (TBT), titanyum (IV) izopropoksit (TTIP), kalay (II) 2-etilheksanoat (stannous oktuat, Sn(Oct)2), antimon (III) oksit (Sb2O3), stannous klorür dihidrat (SnCl2.2H2O) ve alüminyum klorür (AlCl3) olmak üzere altı katalizör kullanarak çeşitli tamamen biyobazlı homopoliesterler sentezlendi. Sentezlenen polimerler NMR ve FTIR ile kimyasal olarak karakterize edildi. Termal özellikler DSC ve TGA ile incelendi. FTIR sonuçları poliesterlerin başarılı bir şekilde sentezlendiğini doğruladı ve DSC tarafından yaklaşık -48 °C'lik bir Tg tespit edildi. %50 ağırlık kaybının meydana geldiği maksimum çalışma sıcaklıkları yaklaşık 365 °C civarındaydı.

Proje Numarası

TUBITAK 220M112

Kaynakça

  • Becker, J., Lange, A., Fabarius, J., & Wittmann, C. (2015). Top value platform chemicals: bio-based production of organic acids. Current opinion in biotechnology, 36, 168-175. doi: https://doi.org/10.1016/j.copbio.2015.08.022
  • Beltran, M., Tjahjono, B., Bogush, A., Julião, J., & Teixeira, E. L. S. (2021). Food Plastic Packaging Transition towards Circular Bioeconomy: A Systematic Review of Literature. Sustainability, 13(7), 3896. doi: https://doi.org/10.3390/su13073896
  • Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539-554. doi: https://doi.org/10.1039/b922014c
  • Brännström, S., Finnveden, M., Johansson, M., Martinelle, M., & Malmström, E. (2018). Itaconate based polyesters: Selectivity and performance of esterification catalysts. European Polymer Journal, 103, 370-377. doi: https://doi.org/10.1016/j.eurpolymj.2018.04.017
  • Broeren, M. L., Kuling, L., Worrell, E., & Shen, L. (2017). Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resources, Conservation and Recycling, 127, 246-255. doi: https://doi.org/10.1016/j.resconrec.2017.09.001
  • Dai, J., Ma, S., Wu, Y., Han, L., Zhang, L., Zhu, J., & Liu, X. (2015). Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 17(4), 2383-2392. doi: https://doi.org/10.1039/C4GC02057J
  • Debuissy, T., Pollet, E., & Avérous, L. (2017). Synthesis and characterization of fully biobased poly (propylene succinate‐ran‐propylene adipate). Analysis of the architecture‐dependent physicochemical behavior. Journal of Polymer Science Part A: Polymer Chemistry, 55(17), 2738-2748. doi: https://doi.org/10.1002/pola.28668
  • Debuissy, T., Sangwan, P., Pollet, E., & Avérous, L. (2017). Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1, 3-propanediol, 1, 4-butanediol, succinic and adipic acids. Polymer, 122, 105-116. doi: https://doi.org/10.1016/j.polymer.2017.06.045
  • Doğan, E., & Küsefoğlu, S. (2008). Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. Journal of Applied Polymer Science, 110(2), 1129-1135. doi:10.1002/app.28708 https://doi.org/10.1002/app.28708
  • Eyiler, E., Chu, I. W., & Walters, K. B. (2014). Toughening of poly(lactic acid) with the renewable bioplastic poly(trimethylene malonate). Journal of Applied Polymer Science, 131(20). doi: https://doi.org/10.1002/app.40888
  • Fabbri, M., Soccio, M., Costa, M., Lotti, N., Gazzano, M., Siracusa, V., . . . García-Fernández, L. (2016). New fully bio-based PLLA triblock copoly (ester urethane) s as potential candidates for soft tissue engineering. Polymer Degradation and Stability, 132, 169-180. doi: https://doi.org/10.1016/j.polymdegradstab.2016.02.024
  • Ferreira-Filipe, D. A., Paço, A., Duarte, A. C., Rocha-Santos, T., & Patrício Silva, A. L. (2021). Are Biobased Plastics Green Alternatives?—A Critical Review. International Journal of Environmental Research and Public Health, 18(15), 7729. doi: https://doi.org/10.3390/ijerph18157729
  • Goerz, O., & Ritter, H. (2013). Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polymer International, 62(5), 709-712. doi: https://doi.org/10.1002/pi.4443
  • Guo, B., Chen, Y., Lei, Y., Zhang, L., Zhou, W. Y., Rabie, A. B. M., & Zhao, J. (2011). Biobased poly (propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules, 12(4), 1312-1321. doi: https://doi.org/10.1021/bm2000378
  • Iwata, T. (2015). Biodegradable and bio‐based polymers: future prospects of eco‐friendly plastics. Angewandte Chemie International Edition, 54(11), 3210-3215. doi: https://doi.org/10.1002/anie.201410770
  • Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., & Liang, H. (2024). Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers, 16(16), 2262. doi: https://doi.org/10.3390/polym16162262
  • Kakadellis, S., & Rosetto, G. (2021). Achieving a circular bioeconomy for plastics. Science, 373(6550), 49-50. doi: https://doi.org/10.1126/science.abj3476
  • Olejnik, O., Masek, A., & Kiersnowski, A. (2020). Thermal analysis of aliphatic polyester blends with natural antioxidants. Polymers, 12(1), 74. doi: https://doi.org/10.3390/polym12010074
  • Pospiech, D., Korwitz, A., Komber, H., Jehnichen, D., Häußler, L., Scheibner, H., . . . Voit, B. (2015). Biobased aliphatic polyesters with DOPO substituents for enhanced flame retardancy. Macromolecular Chemistry and Physics, 216(13), 1447-1461. doi: https://doi.org/10.1002/macp.201500121
  • Przybysz, M., Marć, M., Klein, M., Saeb, M. R., & Formela, K. (2018). Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polymer Testing, 67, 513-521. doi: https://doi.org/10.1016/j.polymertesting.2018.03.014
  • Qiu, K., & Netravali, A. N. (2013). Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polymer composites, 34(5), 799-809. doi: https://doi.org/10.1002/pc.22482
  • Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), 117-137. doi: https://doi.org/10.1038/s41578-021-00407-8
  • Rowe, M. D., Eyiler, E., & Walters, K. B. (2016). Bio‐based plasticizer and thermoset polyesters: A green polymer chemistry approach. Journal of Applied Polymer Science, 133(45). doi: https://doi.org/10.1002/app.43917
  • Tan, B., Bi, S., Emery, K., & Sobkowicz, M. J. (2017). Bio-based poly (butylene succinate-co-hexamethylene succinate) copolyesters with tunable thermal and mechanical properties. European Polymer Journal, 86, 162-172. doi: https://doi.org/10.1016/j.eurpolymj.2016.11.017
  • Terzopoulou, Z., Karakatsianopoulou, E., Kasmi, N., Tsanaktsis, V., Nikolaidis, N., Kostoglou, M., . . . Bikiaris, D. N. (2017). Effect of catalyst type on molecular weight increase and coloration of poly (ethylene furanoate) biobased polyester during melt polycondensation. Polymer Chemistry, 8(44), 6895-6908. doi: https://doi.org/10.1039/C7PY01171G
  • Testud, B., Pintori, D., Grau, E., Taton, D., & Cramail, H. (2017). Hyperbranched polyesters by polycondensation of fatty acid-based AB n-type monomers. Green Chemistry, 19(1), 259-269. doi: https://doi.org/10.1039/C6GC02294D
  • Wang, B., Li, C. Y., Hanzlicek, J., Cheng, S. Z., Geil, P. H., Grebowicz, J., & Ho, R.-M. (2001). Poly (trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer, 42(16), 7171-7180. doi: https://doi.org/10.1016/S0032-3861(01)00046-5
  • Yu, Y., Xiong, H., Xiao, J., Qian, X., Leng, X., Wei, Z., & Li, Y. (2019). High Molecular Weight Unsaturated Copolyesters Derived from Fully Biobased trans-β-Hydromuconic Acid and Fumaric Acid with 1, 4-Butanediol: Synthesis and Thermomechanical Properties. ACS Sustainable Chemistry & Engineering, 7(7), 6859-6869. doi: https://doi.org/10.1021/acssuschemeng.8b06334

EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE)

Yıl 2025, Cilt: 33 Sayı: 3, 1906 - 1913, 19.12.2025
https://doi.org/10.31796/ogummf.1650522

Öz

Driven by both environmental concerns and economic considerations, the demand for biomass-derived monomers in polymer development has significantly increased in recent years. Bio-based plastics, in particular, have emerged as a leading focus area and have consistently ranked among the top priorities in discussions of breakthrough technologies for advancing a circular economy. In this study, one of the goals is to assess the effectiveness of various esterification catalysts. For this purpose, different bio-based homopolyesters using 1,3-propanediol and malonic acid as raw materials and six catalysts (titanium (IV) butoxide (TBT), titanium (IV) isopropoxide (TTIP), tin (II) 2-ethylhexanoate (stannous octoate, Sn(Oct)2), antimony (III) oxide (Sb2O3), stannous chloride dehydrate (SnCl2.2H2O) and aluminum chloride (AlCl3)) were synthesized. The synthesized polymers were chemically characterized by NMR and FTIR. The thermal properties were investigated by DSC and TGA. The FTIR results confirmed that the homopolyesters were successfully synthesized, and a Tg of approximately -48 °C was detected by DSC. The maximum working temperatures, where loss of 50 wt % occurs, were around 365 °C.

Destekleyen Kurum

TUBITAK

Proje Numarası

TUBITAK 220M112

Kaynakça

  • Becker, J., Lange, A., Fabarius, J., & Wittmann, C. (2015). Top value platform chemicals: bio-based production of organic acids. Current opinion in biotechnology, 36, 168-175. doi: https://doi.org/10.1016/j.copbio.2015.08.022
  • Beltran, M., Tjahjono, B., Bogush, A., Julião, J., & Teixeira, E. L. S. (2021). Food Plastic Packaging Transition towards Circular Bioeconomy: A Systematic Review of Literature. Sustainability, 13(7), 3896. doi: https://doi.org/10.3390/su13073896
  • Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539-554. doi: https://doi.org/10.1039/b922014c
  • Brännström, S., Finnveden, M., Johansson, M., Martinelle, M., & Malmström, E. (2018). Itaconate based polyesters: Selectivity and performance of esterification catalysts. European Polymer Journal, 103, 370-377. doi: https://doi.org/10.1016/j.eurpolymj.2018.04.017
  • Broeren, M. L., Kuling, L., Worrell, E., & Shen, L. (2017). Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resources, Conservation and Recycling, 127, 246-255. doi: https://doi.org/10.1016/j.resconrec.2017.09.001
  • Dai, J., Ma, S., Wu, Y., Han, L., Zhang, L., Zhu, J., & Liu, X. (2015). Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 17(4), 2383-2392. doi: https://doi.org/10.1039/C4GC02057J
  • Debuissy, T., Pollet, E., & Avérous, L. (2017). Synthesis and characterization of fully biobased poly (propylene succinate‐ran‐propylene adipate). Analysis of the architecture‐dependent physicochemical behavior. Journal of Polymer Science Part A: Polymer Chemistry, 55(17), 2738-2748. doi: https://doi.org/10.1002/pola.28668
  • Debuissy, T., Sangwan, P., Pollet, E., & Avérous, L. (2017). Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1, 3-propanediol, 1, 4-butanediol, succinic and adipic acids. Polymer, 122, 105-116. doi: https://doi.org/10.1016/j.polymer.2017.06.045
  • Doğan, E., & Küsefoğlu, S. (2008). Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. Journal of Applied Polymer Science, 110(2), 1129-1135. doi:10.1002/app.28708 https://doi.org/10.1002/app.28708
  • Eyiler, E., Chu, I. W., & Walters, K. B. (2014). Toughening of poly(lactic acid) with the renewable bioplastic poly(trimethylene malonate). Journal of Applied Polymer Science, 131(20). doi: https://doi.org/10.1002/app.40888
  • Fabbri, M., Soccio, M., Costa, M., Lotti, N., Gazzano, M., Siracusa, V., . . . García-Fernández, L. (2016). New fully bio-based PLLA triblock copoly (ester urethane) s as potential candidates for soft tissue engineering. Polymer Degradation and Stability, 132, 169-180. doi: https://doi.org/10.1016/j.polymdegradstab.2016.02.024
  • Ferreira-Filipe, D. A., Paço, A., Duarte, A. C., Rocha-Santos, T., & Patrício Silva, A. L. (2021). Are Biobased Plastics Green Alternatives?—A Critical Review. International Journal of Environmental Research and Public Health, 18(15), 7729. doi: https://doi.org/10.3390/ijerph18157729
  • Goerz, O., & Ritter, H. (2013). Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polymer International, 62(5), 709-712. doi: https://doi.org/10.1002/pi.4443
  • Guo, B., Chen, Y., Lei, Y., Zhang, L., Zhou, W. Y., Rabie, A. B. M., & Zhao, J. (2011). Biobased poly (propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules, 12(4), 1312-1321. doi: https://doi.org/10.1021/bm2000378
  • Iwata, T. (2015). Biodegradable and bio‐based polymers: future prospects of eco‐friendly plastics. Angewandte Chemie International Edition, 54(11), 3210-3215. doi: https://doi.org/10.1002/anie.201410770
  • Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., & Liang, H. (2024). Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers, 16(16), 2262. doi: https://doi.org/10.3390/polym16162262
  • Kakadellis, S., & Rosetto, G. (2021). Achieving a circular bioeconomy for plastics. Science, 373(6550), 49-50. doi: https://doi.org/10.1126/science.abj3476
  • Olejnik, O., Masek, A., & Kiersnowski, A. (2020). Thermal analysis of aliphatic polyester blends with natural antioxidants. Polymers, 12(1), 74. doi: https://doi.org/10.3390/polym12010074
  • Pospiech, D., Korwitz, A., Komber, H., Jehnichen, D., Häußler, L., Scheibner, H., . . . Voit, B. (2015). Biobased aliphatic polyesters with DOPO substituents for enhanced flame retardancy. Macromolecular Chemistry and Physics, 216(13), 1447-1461. doi: https://doi.org/10.1002/macp.201500121
  • Przybysz, M., Marć, M., Klein, M., Saeb, M. R., & Formela, K. (2018). Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polymer Testing, 67, 513-521. doi: https://doi.org/10.1016/j.polymertesting.2018.03.014
  • Qiu, K., & Netravali, A. N. (2013). Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polymer composites, 34(5), 799-809. doi: https://doi.org/10.1002/pc.22482
  • Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), 117-137. doi: https://doi.org/10.1038/s41578-021-00407-8
  • Rowe, M. D., Eyiler, E., & Walters, K. B. (2016). Bio‐based plasticizer and thermoset polyesters: A green polymer chemistry approach. Journal of Applied Polymer Science, 133(45). doi: https://doi.org/10.1002/app.43917
  • Tan, B., Bi, S., Emery, K., & Sobkowicz, M. J. (2017). Bio-based poly (butylene succinate-co-hexamethylene succinate) copolyesters with tunable thermal and mechanical properties. European Polymer Journal, 86, 162-172. doi: https://doi.org/10.1016/j.eurpolymj.2016.11.017
  • Terzopoulou, Z., Karakatsianopoulou, E., Kasmi, N., Tsanaktsis, V., Nikolaidis, N., Kostoglou, M., . . . Bikiaris, D. N. (2017). Effect of catalyst type on molecular weight increase and coloration of poly (ethylene furanoate) biobased polyester during melt polycondensation. Polymer Chemistry, 8(44), 6895-6908. doi: https://doi.org/10.1039/C7PY01171G
  • Testud, B., Pintori, D., Grau, E., Taton, D., & Cramail, H. (2017). Hyperbranched polyesters by polycondensation of fatty acid-based AB n-type monomers. Green Chemistry, 19(1), 259-269. doi: https://doi.org/10.1039/C6GC02294D
  • Wang, B., Li, C. Y., Hanzlicek, J., Cheng, S. Z., Geil, P. H., Grebowicz, J., & Ho, R.-M. (2001). Poly (trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer, 42(16), 7171-7180. doi: https://doi.org/10.1016/S0032-3861(01)00046-5
  • Yu, Y., Xiong, H., Xiao, J., Qian, X., Leng, X., Wei, Z., & Li, Y. (2019). High Molecular Weight Unsaturated Copolyesters Derived from Fully Biobased trans-β-Hydromuconic Acid and Fumaric Acid with 1, 4-Butanediol: Synthesis and Thermomechanical Properties. ACS Sustainable Chemistry & Engineering, 7(7), 6859-6869. doi: https://doi.org/10.1021/acssuschemeng.8b06334
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ersan Eyiler 0000-0002-1754-6590

Proje Numarası TUBITAK 220M112
Gönderilme Tarihi 4 Mart 2025
Kabul Tarihi 15 Eylül 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 3

Kaynak Göster

APA Eyiler, E. (2025). EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE). Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(3), 1906-1913. https://doi.org/10.31796/ogummf.1650522
AMA Eyiler E. EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE). ESOGÜ Müh Mim Fak Derg. Aralık 2025;33(3):1906-1913. doi:10.31796/ogummf.1650522
Chicago Eyiler, Ersan. “EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE)”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 3 (Aralık 2025): 1906-13. https://doi.org/10.31796/ogummf.1650522.
EndNote Eyiler E (01 Aralık 2025) EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE). Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 3 1906–1913.
IEEE E. Eyiler, “EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE)”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 3, ss. 1906–1913, 2025, doi: 10.31796/ogummf.1650522.
ISNAD Eyiler, Ersan. “EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE)”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/3 (Aralık2025), 1906-1913. https://doi.org/10.31796/ogummf.1650522.
JAMA Eyiler E. EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE). ESOGÜ Müh Mim Fak Derg. 2025;33:1906–1913.
MLA Eyiler, Ersan. “EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE)”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2025, ss. 1906-13, doi:10.31796/ogummf.1650522.
Vancouver Eyiler E. EFFECT OF DIFFERENT CATALYSTS ON SYNTHESIS OF BIO-BASED POLY(PROPYLENE MALONATE). ESOGÜ Müh Mim Fak Derg. 2025;33(3):1906-13.

20873      13565         15461