ELEKTRİKLİ ARAÇLAR İÇİN ANALİTİK HİYERARŞİ SÜRECİ KULLANARAK SÜRÜCÜ TERCİHLERİNİ DİKKATE ALAN YOL PLANLAMA
Yıl 2025,
Cilt: 33 Sayı: 3, 2054 - 2065, 19.12.2025
Mehmet Arıkan
,
Sinem Bozkurt Keser
,
İnci Sarıçiçek
,
Ahmet Yazici
Öz
Sürdürülebilir taşımacılık ve yeşil lojistik giderek daha önemli hale gelmektedir ve elektrikli araçların verimli kullanımı kritik bir rol oynamaktadır. Ancak, sınırlı sürüş menzili ve optimize edilmiş şarj stratejilerine duyulan ihtiyaç nedeniyle elektrikli araçlar için verimli yol planlaması büyük bir zorluk olmaya devam etmektedir. Genellikle, yol önerileri tek bir kritere dayalı olarak yapılır. Ancak, sürücüler yol seçimi için birden fazla kriteri göz önünde bulundurmak isteyebilir. Bu çalışma, toplam seyahat süresi, enerji tüketimi ve seyahat mesafesini dikkate alarak sürücü tercihlerini içeren çok kriterli bir yol planlama algoritması oluşturmaya odaklanmaktadır. Uygun öneriyi elde etmek için bu üç kriter Analitik Hiyerarşi Süreci kullanılarak değerlendirilmiş ve sürücü tercihlerini dikkate alan yolları belirlemek için Dijkstra algoritması kullanılmıştır. Enerji geri kazanımı nedeniyle negatif enerji ağırlıklarını kaldırmak için Johnson tekniği kullanılmış ve Dijkstra algoritmasının negatif edge ağırlıkları ile uyumsuzluk sorunu çözülmüştür. Sonuçlar, önerilen algoritmanın sürücü tercihlerine göre tasarlanmış çözümleri verimli bir şekilde üretebildiğini ve elektrikli araç rotalama uygulamaları için uygun olduğunu göstermiştir. Bu çalışma, elektrikli araçların yaygın olarak benimsenmesini hedefleyerek kullanıcı memnuniyetini artırmaya yönelik bir yöntem sunmakta ve elektrikli araçların kendine özgü zorluklarının ele alınmasında çok kriterli karar vermenin önemini vurgulamaktadır.
Proje Numarası
101097267, 222N269
Kaynakça
-
Abidin, S. Z., Abidin, N. I. Z., & Daud, H. (2025). Decision-Making Support in Vehicle Routing Problems: A Review of Recent Literature. Journal of Advanced Research in Applied Sciences and Engineering Technology, 44(2), 124-134. doi: https://doi.org/10.37934/araset.44.2.124134
-
Ahmed, S., Ibrahim, R. F., & Hefny, H. A. (2018). Mobile-based routes network analysis for emergency response using an enhanced Dijkstra’s algorithm and AHP. International Journal of Intelligent Engineering and Systems, 11(6), 252–260. doi: https://doi.org/10.22266/IJIES2018.1231.25
-
Alizadeh, M., Wai, H. T., Scaglione, A., Goldsmith, A., Fan, Y. Y., & Javidi, T. (2014). Optimized path planning for electric vehicle routing and charging. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 25–32). Monticello, IL, USA: IEEE. doi: https://doi.org/10.1109/ALLERTON.2014.7028431
-
Artmeier, A., Haselmayr, J., Leucker, M., & Sachenbacher, M. (2010). The shortest path problem revisited: Optimal routing for electric vehicles. In KI 2010: Advances in Artificial Intelligence (pp. 309–316). Karlsruhe, Germany: Springer. doi: https://doi.org/10.1007/978-3-642-16111-7_35
-
Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87-90. doi: https://doi.org/10.1090/qam/102435
-
Bouakouk, M. R., Abdelli, A., Mokdad, L., & Othman, J. B. (2022). Dealing with complex routing requirements using an MCDM-based approach. In 2022 International Wireless Communications and Mobile Computing (IWCMC) (pp. 1256–1261). Dubrovnik, Croatia: IEEE. doi: http://doi.org/10.1109/IWCMC55113.2022.9825024
-
Bozkurt, S., Yazici, A., & Keskin, K. (2012). A multicriteria route planning approach considering driver preferences. In 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012) (pp. 324–328). Istanbul, Turkey: IEEE. doi: http://doi.org/10.1109/ICVES.2012.6294270
-
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1),269–271. doi: https://doi.org/10.1007/BF01386390
-
Ding, D., Li, J., Tu, P., Wang, H., Cao, T., & Zhang, F. (2020). Electric vehicle charging warning and path planning method based on spark. IEEE Access, 8, 8543-8553. doi: https://doi.org/10.1109/access.2020.2964307
-
Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 25(1), 1108–1113. San Francisco, CA, USA. doi: https://doi.org/10.1609/aaai.v25i1.7991
-
Faraj, M., & Basir, O. (2016). Range anxiety reduction in battery-powered vehicles. In 2016 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1-6). IEEE. doi: http://doi.org/10.1109/ITEC.2016.7520190
-
Fulton, L. M., Jaffe, A., & McDonald, Z. (2019). Internal combustion engine bans and global oil use. University of California eScholarship. Retrieved from https://escholarship.org/uc/item/52j400b1
-
Gavade, R. K. (2014). Multi-Criteria Decision Making: An overview of different selection problems and methods. International Journal of Computer Science and Information Technologies, 5(4),5643-5646.
-
Javaid, A. (2013). Understanding Dijkstra's algorithm. SSRN. Retrieved from https://ssrn.com/abstract=2340905
-
Keser, S. B., Yazıcı, A., & Günal, S. (2016). A multi-criteria heuristic algorithm for personalized route planning. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(2), 299-313 doi: https://doi.org/10.18038/btda.06501
-
Kien Hua, T., & Abdullah, N. (2018). Weighted Sum-Dijkstra’s Algorithm in Best Path Identification based on Multiple Criteria. Journal of Computer Science & Computational Mathematics, 107–113. doi: https://doi.org/10.20967/jcscm.2018.04.008
-
Knez, D., Dumancic, A., Erdelic, T., & Mardesic, N. (2023). Solving Shortest Energy and Time-Dependent Travel Time Path Problems on a Small-Sized Road Network. In Proceedings Elmar - International Symposium Electronics in Marine (pp. 33–36). Zadar, Croatia: IEEE. doi: https://doi.org/10.1109/ELMAR59410.2023.10253923
-
Kucukoglu, I., Dewil, R., & Cattrysse, D. (2021). The electric vehicle routing problem and its variations: A literature review. Computers & Industrial Engineering, 161, 107650. doi: https://doi.org/10.1016/j.cie.2021.107650
-
Kurczveil, T., López, P. Á., & Schnieder, E. (2014). Implementation of an energy model and a charging infrastructure in SUMO. In Simulation of Urban Mobility: SUMO 2013, Revised Selected Papers (pp. 33–43). Berlin, Germany: Springer. doi: http://doi.org/10.1007/978-3-662-45079-6_3
-
Liu, Z., Song, J., Kubal, J., Susarla, N., Knehr, K. W., Islam, E., ... & Ahmed, S. (2021). Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Policy, 158, 112564. doi: https://doi.org/10.1016/j.enpol.2021.112564
-
Malczewski, J. (1999). GIS and multicriteria decision analysis. New York, NY: John Wiley & Sons, Inc.
-
Medak, J., & Gogoi, P. P. (2018). Review and analysis of single-source shortest path problem using Dijkstra’s algorithm. IOSR Journal of Computer Engineering, 20(2), 10–15.
-
Nasution, S. M., Husni, E., Kuspriyanto, K., & Yusuf, R. (2022). Personalized route recommendation using F-AHP-Express. Sustainability, 14(17), 10831. doi: https://doi.org/10.3390/su141710831
-
Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM (JACM), 24(1), 1-13. doi: https://doi.org/10.1145/321992.321993
-
Pahlavani, P., & Delavar, M. R. (2014). Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection. Transportation research part C: emerging technologies, 40, 14-35. doi: https://doi.org/10.1016/j.trc.2014.01.001
-
Ramachandaramurthy, V. K., Ajmal, A. M., Kasinathan, P., Tan, K. M., Yong, J. Y., & Vinoth, R. (2023). Social acceptance and preference of EV users—a review. IEEE Access, 11, 11956-11972. doi: http://doi.org/10.1109/ACCESS.2023.3241636
-
Ribeiro, D. L., & Longaray, A. A. (2024). A Novel Computational Mathematical Model for Team and Route Selection of the Emergency Response Operations. Engineering, Technology & Applied Science Research, 14(2), 13624-13630. doi: https://doi.org/10.48084/etasr
-
Rosita, Y. D., Rosyida, E. E., & Rudiyanto, M. A. (2019). Implementation of dijkstra algorithm and multi-criteria decision-making for optimal route distribution. Procedia Computer Science, 161, 378–385. doi: https://doi.org/10.1016/j.procs.2019.11.136
-
Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
-
Schoenberg, S., & Dressler, F. (2022). Reducing waiting times at charging stations with adaptive electric vehicle route planning. IEEE Transactions on Intelligent Vehicles, 8(1), 95-107. doi: 10.1109/TIV.2022.3140894
-
Udhan, P., Ganeshkar, A., Murugesan, P., Permani, A. R., Sanjeeva, S., & Deshpande, P. (2022). Vehicle route planning using dynamically weighted Dijkstra’s algorithm with traffic prediction. arXiv preprint arXiv:2205.15190. Retrieved May 2, 2025. doi: https://doi.org/10.48550/arXiv.2205.15190
-
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of operational research, 169(1), 1-29. doi: http://doi.org/10.1016/j.ejor.2004.04.028
-
Xinlei, M., Wen, C., Zhan, G., & Tao, Y. (2022). Adaptive decision support model for sustainable transport system using fuzzy AHP and dynamical Dijkstra simulations. Mathematical Biosciences and Engineering, 19(10), 9895–9914. doi: https://doi.org/10.3934/mbe.2022461
-
Yang, S., & Li, C. (2010). An enhanced routing method with Dijkstra algorithm and AHP analysis in GIS-based emergency plan. In 2010 18th International Conference on Geoinformatics (pp. 1–6). Beijing, China: IEEE. doi: https://doi.org/10.1109/GEOINFORMATICS.2010.5567840
PATH PLANNING CONSIDERING DRIVER PREFERENCES USING ANALYTIC HIERARCHY PROCESS FOR ELECTRIC VEHICLES
Yıl 2025,
Cilt: 33 Sayı: 3, 2054 - 2065, 19.12.2025
Mehmet Arıkan
,
Sinem Bozkurt Keser
,
İnci Sarıçiçek
,
Ahmet Yazici
Öz
Sustainable transportation and green logistics are becoming increasingly important, and the efficient use of electric vehicles (EVs) plays a critical role. However, efficient path planning for EVs remains a major challenge due to limited driving range and the need for optimised charging strategies. Usually, path recommendations are made based on a single criterion. However, drivers may want to consider multiple criteria for path selection. This study focuses on building a multi-criteria path planning algorithm that incorporates driver preferences by considering total travel time, energy consumption and travelling distance. To obtain the appropriate recommendation, these three criteria are evaluated using the Analytic Hierarchy Process (AHP) and Dijkstra algorithm is used to identify roads that take into account driver preferences. Johnson technique was used to remove negative energy weights due to energy recovery and solved the incompatibility problem of the Dijkstra algorithm with negative edge weights. The results have shown the proposed algorithm can efficiently generate solutions designed based on driver preferences and is suitable for EV routing applications. This study presents a method to increase user satisfaction by aiming at the widespread adoption of EVs and emphasizes the importance of multi-criteria decision making in addressing the unique challenges of EVs.
Destekleyen Kurum
Key Digital Technologies Joint Undertaking (KDT JU) from the European Union’s Horizon Europe Programme and the National Authorities
Proje Numarası
101097267, 222N269
Teşekkür
This paper is supported by the OPEVA project that has received funding within the Key Digital Technologies Joint Undertaking (KDT JU) from the European Union’s Horizon Europe Programme and the National Authorities (France, Belgium, Czechia, Italy, Portugal, Turkey, Switzerland), under grant agreement 101097267. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or KDT JU. Neither the European Union nor the granting authority can be held responsible for them. This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK), Contract No 222N269, project title: “OPtimization of Electric Vehicle Autonomy (OPEVA)".
Kaynakça
-
Abidin, S. Z., Abidin, N. I. Z., & Daud, H. (2025). Decision-Making Support in Vehicle Routing Problems: A Review of Recent Literature. Journal of Advanced Research in Applied Sciences and Engineering Technology, 44(2), 124-134. doi: https://doi.org/10.37934/araset.44.2.124134
-
Ahmed, S., Ibrahim, R. F., & Hefny, H. A. (2018). Mobile-based routes network analysis for emergency response using an enhanced Dijkstra’s algorithm and AHP. International Journal of Intelligent Engineering and Systems, 11(6), 252–260. doi: https://doi.org/10.22266/IJIES2018.1231.25
-
Alizadeh, M., Wai, H. T., Scaglione, A., Goldsmith, A., Fan, Y. Y., & Javidi, T. (2014). Optimized path planning for electric vehicle routing and charging. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 25–32). Monticello, IL, USA: IEEE. doi: https://doi.org/10.1109/ALLERTON.2014.7028431
-
Artmeier, A., Haselmayr, J., Leucker, M., & Sachenbacher, M. (2010). The shortest path problem revisited: Optimal routing for electric vehicles. In KI 2010: Advances in Artificial Intelligence (pp. 309–316). Karlsruhe, Germany: Springer. doi: https://doi.org/10.1007/978-3-642-16111-7_35
-
Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87-90. doi: https://doi.org/10.1090/qam/102435
-
Bouakouk, M. R., Abdelli, A., Mokdad, L., & Othman, J. B. (2022). Dealing with complex routing requirements using an MCDM-based approach. In 2022 International Wireless Communications and Mobile Computing (IWCMC) (pp. 1256–1261). Dubrovnik, Croatia: IEEE. doi: http://doi.org/10.1109/IWCMC55113.2022.9825024
-
Bozkurt, S., Yazici, A., & Keskin, K. (2012). A multicriteria route planning approach considering driver preferences. In 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012) (pp. 324–328). Istanbul, Turkey: IEEE. doi: http://doi.org/10.1109/ICVES.2012.6294270
-
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1),269–271. doi: https://doi.org/10.1007/BF01386390
-
Ding, D., Li, J., Tu, P., Wang, H., Cao, T., & Zhang, F. (2020). Electric vehicle charging warning and path planning method based on spark. IEEE Access, 8, 8543-8553. doi: https://doi.org/10.1109/access.2020.2964307
-
Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 25(1), 1108–1113. San Francisco, CA, USA. doi: https://doi.org/10.1609/aaai.v25i1.7991
-
Faraj, M., & Basir, O. (2016). Range anxiety reduction in battery-powered vehicles. In 2016 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1-6). IEEE. doi: http://doi.org/10.1109/ITEC.2016.7520190
-
Fulton, L. M., Jaffe, A., & McDonald, Z. (2019). Internal combustion engine bans and global oil use. University of California eScholarship. Retrieved from https://escholarship.org/uc/item/52j400b1
-
Gavade, R. K. (2014). Multi-Criteria Decision Making: An overview of different selection problems and methods. International Journal of Computer Science and Information Technologies, 5(4),5643-5646.
-
Javaid, A. (2013). Understanding Dijkstra's algorithm. SSRN. Retrieved from https://ssrn.com/abstract=2340905
-
Keser, S. B., Yazıcı, A., & Günal, S. (2016). A multi-criteria heuristic algorithm for personalized route planning. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(2), 299-313 doi: https://doi.org/10.18038/btda.06501
-
Kien Hua, T., & Abdullah, N. (2018). Weighted Sum-Dijkstra’s Algorithm in Best Path Identification based on Multiple Criteria. Journal of Computer Science & Computational Mathematics, 107–113. doi: https://doi.org/10.20967/jcscm.2018.04.008
-
Knez, D., Dumancic, A., Erdelic, T., & Mardesic, N. (2023). Solving Shortest Energy and Time-Dependent Travel Time Path Problems on a Small-Sized Road Network. In Proceedings Elmar - International Symposium Electronics in Marine (pp. 33–36). Zadar, Croatia: IEEE. doi: https://doi.org/10.1109/ELMAR59410.2023.10253923
-
Kucukoglu, I., Dewil, R., & Cattrysse, D. (2021). The electric vehicle routing problem and its variations: A literature review. Computers & Industrial Engineering, 161, 107650. doi: https://doi.org/10.1016/j.cie.2021.107650
-
Kurczveil, T., López, P. Á., & Schnieder, E. (2014). Implementation of an energy model and a charging infrastructure in SUMO. In Simulation of Urban Mobility: SUMO 2013, Revised Selected Papers (pp. 33–43). Berlin, Germany: Springer. doi: http://doi.org/10.1007/978-3-662-45079-6_3
-
Liu, Z., Song, J., Kubal, J., Susarla, N., Knehr, K. W., Islam, E., ... & Ahmed, S. (2021). Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Policy, 158, 112564. doi: https://doi.org/10.1016/j.enpol.2021.112564
-
Malczewski, J. (1999). GIS and multicriteria decision analysis. New York, NY: John Wiley & Sons, Inc.
-
Medak, J., & Gogoi, P. P. (2018). Review and analysis of single-source shortest path problem using Dijkstra’s algorithm. IOSR Journal of Computer Engineering, 20(2), 10–15.
-
Nasution, S. M., Husni, E., Kuspriyanto, K., & Yusuf, R. (2022). Personalized route recommendation using F-AHP-Express. Sustainability, 14(17), 10831. doi: https://doi.org/10.3390/su141710831
-
Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM (JACM), 24(1), 1-13. doi: https://doi.org/10.1145/321992.321993
-
Pahlavani, P., & Delavar, M. R. (2014). Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection. Transportation research part C: emerging technologies, 40, 14-35. doi: https://doi.org/10.1016/j.trc.2014.01.001
-
Ramachandaramurthy, V. K., Ajmal, A. M., Kasinathan, P., Tan, K. M., Yong, J. Y., & Vinoth, R. (2023). Social acceptance and preference of EV users—a review. IEEE Access, 11, 11956-11972. doi: http://doi.org/10.1109/ACCESS.2023.3241636
-
Ribeiro, D. L., & Longaray, A. A. (2024). A Novel Computational Mathematical Model for Team and Route Selection of the Emergency Response Operations. Engineering, Technology & Applied Science Research, 14(2), 13624-13630. doi: https://doi.org/10.48084/etasr
-
Rosita, Y. D., Rosyida, E. E., & Rudiyanto, M. A. (2019). Implementation of dijkstra algorithm and multi-criteria decision-making for optimal route distribution. Procedia Computer Science, 161, 378–385. doi: https://doi.org/10.1016/j.procs.2019.11.136
-
Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
-
Schoenberg, S., & Dressler, F. (2022). Reducing waiting times at charging stations with adaptive electric vehicle route planning. IEEE Transactions on Intelligent Vehicles, 8(1), 95-107. doi: 10.1109/TIV.2022.3140894
-
Udhan, P., Ganeshkar, A., Murugesan, P., Permani, A. R., Sanjeeva, S., & Deshpande, P. (2022). Vehicle route planning using dynamically weighted Dijkstra’s algorithm with traffic prediction. arXiv preprint arXiv:2205.15190. Retrieved May 2, 2025. doi: https://doi.org/10.48550/arXiv.2205.15190
-
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of operational research, 169(1), 1-29. doi: http://doi.org/10.1016/j.ejor.2004.04.028
-
Xinlei, M., Wen, C., Zhan, G., & Tao, Y. (2022). Adaptive decision support model for sustainable transport system using fuzzy AHP and dynamical Dijkstra simulations. Mathematical Biosciences and Engineering, 19(10), 9895–9914. doi: https://doi.org/10.3934/mbe.2022461
-
Yang, S., & Li, C. (2010). An enhanced routing method with Dijkstra algorithm and AHP analysis in GIS-based emergency plan. In 2010 18th International Conference on Geoinformatics (pp. 1–6). Beijing, China: IEEE. doi: https://doi.org/10.1109/GEOINFORMATICS.2010.5567840