Araştırma Makalesi
BibTex RIS Kaynak Göster

AYÇİÇEK EKSTRAKSİYON KÜSPESİNİN PROLİZİNDEN ELDE EDİLEN ALİFATİK BİLEŞİKLERİN KARAKTERİZASYONU

Yıl 2025, Cilt: 33 Sayı: 3, 2042 - 2046, 19.12.2025
https://doi.org/10.31796/ogummf.1794100

Öz

Bu çalışmada, ayçiçek ekstraksiyon küspesinin pirolizinden elde edilen alifatik bileşikler kolon kromatografisi yöntemi ile karakterize edilmiştir. Piroliz sıvı ürünü pentan kullanılarak pentanda çözünen (alifatik, aromatik, polar fraksiyonlar) ve çözünmeyen (asfaltenler) bileşikleri olmak üzere iki fraksiyona ayrılmıştır. Alifatik fraksiyonun kimyasal bileşimi kromatografik ve spektroskopik teknikler (FTIR, kolon kromatografisi ve GC) kullanılarak incelenmiştir. Kolon kromatografisi sonuçlarına göre, piroliz yağı %52 alifatik, aromatik, polar fraksiyonlar ve %48 asfaltenden oluşmaktadır. Kolon kromatografisi, piroliz yağının %8,58 alifatik, %19,76 aromatik ve %23,66 polar fraksiyonlardan oluştuğunu göstermiştir. Ayrıca, alifatik bileşik karışımlarının (C23 ila C31 karbon içeren) kolon kromatografisi yöntemi ile bileşiklerine ayrılabileceği gösterilmiştir. Ayçiçek ekstraksiyon küspesinin pirolizinden elde edilen pentan çözünür fraksiyonunun kimyasal karakterizasyonu, pentan çözünür fraksiyonunun alifatik kimyasallar için hammadde kaynağı olabileceğini göstermiştir. Bu yöntemle elde edilen alifatik bileşikler, karbon dağılımları dizel yakıtlarına benzer olduğundan, dizel yakıtlarına faydalı bir alternatif olarak düşünülebilir.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Afif, R. A., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250–2258. doi: https://doi.org/10.1016/j.renene.2019.09.146
  • Ashoor, S., Khang, T. U., Lee, Y. H., Hyung, J. S., Choi, S. Y., Lim, S. E., … Na, J-G. (2023). Bioupgrading of the aqueous phase of pyrolysis oil from lignocellulosic biomass: a platform for renewable chemicals and fuels from the whole fraction of biomass. Bioresources and Bioprocessing, 10, 34. doi: https://doi.org/10.1186/s40643-023-00654-3
  • Avcı, Hansu, T., Atelge, R., Kaya, M., Demir, Kıvrak, H., ve Atabani, A. (2025). Atık fındık kabuğu tabanlı heterojen katalizörlerle atık yağlardan biyodizel üretimi [Biodiesel Production from Waste Oils with Hazelnut Shell-Based Heterogeneous Catalysts]. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 3(1), 1–14. doi: https://doi.org/10.70562/tubid.1659612
  • Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel production with castor bean: A win–win strategy for marginal land. Agronomy, 10, 1690. doi: https://doi.org/10.3390/agronomy10111690
  • Ebrahimian, E., Denayer, J. F. M., Aghbashlo, M., Tabatabaei, M., & Karimi, K. (2022). Biomethane and biodiesel production from sunflower crop: A biorefinery perspective. Renewable Energy, 200, 1352–11361. doi: https://doi.org/10.1016/j.renene.2022.10.069
  • Liu, W.-J., Li, W.-W., Jiang, H., & Yu, H.-Q. (2017). Fates of Chemical Elements in Biomass during Its Pyrolysis. Chemical Reviews, 117(9), 6367‑6398. doi: https://doi.org/10.1021/acs.chemrev.6b00647
  • Ngangyo, Heya, M., Foroughbakhch, Pournavab, R., Carrillo, Parra, A., Zelinski, V., & Salas, Cruz, L. R. (2019). Elemental Composition and Flue Gas Emissions of Different Components from Five Semi Arid Woody Species in Pyrolysed and Non Pyrolysed Material. Sustainability, 11(5), 1245. doi:  https://doi.org/10.3390/su11051245
  • Onay Ö., ve Koçkar Ö. M. (1998). Fındık Kabuklarından Hızlı Piroliz Yöntemiyle Sentetik Sıvı Yakıt Eldesi [Production of liquid fuel from nut shell by fast pyrolysis]. Journal of Engineering and Architectural Faculty of Eskişehir Osmangazi University, 11(1), 72–81. doi: https://dergipark.org.tr/tr/pub/ogummf/issue/30463/329430
  • Osman, A. I., Farghali, M., Ihara, I., Elgarahy, A. M., Ayyad, A., Mehta, N., … Rooney D. W. (2023). Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environmental Chemistry Letters, 21(3), 1419 1476. doi: https://doi.org/10.1007/s10311-023-01573-7
  • Pfersich, J., Arauzo, P. J., Lucian, M., Modugno, P., Titirici, M-M., Luca, F., & Kruse, A. (2020). Hydrothermal conversion of spent sugar beets into high-value platform molecules. Molecules, 25(17), 3914. doi: https://doi.org/10.3390/molecules25173914
  • Pütün, A. E., Özbay, N., Koçkar, Ö. M., & Pütün, E. (1997). Fixed-bed Pyrolysis of cotton seed cake: Product Yield and Compositions, Energy Sources,19, 905-915. doi: https://doi.org/10.1080/00908319708908900
  • Pütün, A. E., Özcan, A., & Pütün E. (1999). Pyrolysis of Hazelnut Shells in a Fixed-bed Tubular Reactor: Yields and Structural Analysis of Bio-oil, J. Anal. Appl. Pyrolysis 52 (1), 33-49. doi: https://doi.org/10.1016/S0165-2370(99)00044-3
  • Rahmawati, Z., Santoso, L., Abdullah, W. N. W., Hamid, A., Jamari, N. L. A., Sugiarso, D., … Widati, A. A. (2024). Biomass as an alternative feedstock to oleochemicals. RSC Advances, 14(39), 28827 28843. doi: https://doi.org/10.1039/D4RA04481A
  • Yorgun, S., Şensöz, S., & Koçkar Ö. M. (2001a). Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass and Bioenergy, 20(2), 141–148. doi: https://doi.org/10.1016/S0961-9534(00)00064-7
  • Yorgun, S., Şensöz, S., & Koçkar, Ö. M. (2001b). Flash Pyrolysis of Sunflower oil Cake for Production of Liquid Fuels, J. Anal. Appl. Pyrolysis 60 (1), 1-12. doi: https://doi.org/10.1016/S0165-2370(00)00102-9
  • Zhou, Y., Remon, J., Pang, X., Jiang, Z., Liu, H., & Ding, W. (2023). Water based review: Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. Science of The Total Environment, 886,163920. doi: https://doi.org/10.1016/j.scitotenv.2023.163920

CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE

Yıl 2025, Cilt: 33 Sayı: 3, 2042 - 2046, 19.12.2025
https://doi.org/10.31796/ogummf.1794100

Öz

In this study, aliphatic compounds obtained by pyrolysis of sunflower-extracted bagasse were characterized by column chromatography method. The pyrolysis liquid product was separated into two fractions using pentane: pentane-soluble (aliphatic, aromatic, polar fractions) and insoluble (asphaltic) compounds. The chemical composition of the aliphatic fraction was investigated using chromatographic and spectroscopic techniques (FTIR, column chromatography and GC). According to column chromatography results, pyrolysis oil consists of 52 % aliphatic, aromatic, polar fractions and 48 % asphalten. Column chromatography indicated that the pyrolysis liquid product consists of 8,58 % aliphatic, 19,76 % aromatic and 23,66 % polar fractions. Furthermore, it was shown that the aliphatic compounds mixtures (including from C23 to C31) could be separated into their compounds by the column chromatography method. Chemical characterization of the pentane soluble fraction obtained from the pyrolysis of sunflower extraction bagasse indicated that the pentane soluble fraction could be a raw material source for aliphatic chemicals. The aliphatic compounds obtained by this method can be considered to be a useful alternative to diesel fuels because their carbon distribution is similar to that of diesel fuels.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Afif, R. A., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250–2258. doi: https://doi.org/10.1016/j.renene.2019.09.146
  • Ashoor, S., Khang, T. U., Lee, Y. H., Hyung, J. S., Choi, S. Y., Lim, S. E., … Na, J-G. (2023). Bioupgrading of the aqueous phase of pyrolysis oil from lignocellulosic biomass: a platform for renewable chemicals and fuels from the whole fraction of biomass. Bioresources and Bioprocessing, 10, 34. doi: https://doi.org/10.1186/s40643-023-00654-3
  • Avcı, Hansu, T., Atelge, R., Kaya, M., Demir, Kıvrak, H., ve Atabani, A. (2025). Atık fındık kabuğu tabanlı heterojen katalizörlerle atık yağlardan biyodizel üretimi [Biodiesel Production from Waste Oils with Hazelnut Shell-Based Heterogeneous Catalysts]. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 3(1), 1–14. doi: https://doi.org/10.70562/tubid.1659612
  • Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel production with castor bean: A win–win strategy for marginal land. Agronomy, 10, 1690. doi: https://doi.org/10.3390/agronomy10111690
  • Ebrahimian, E., Denayer, J. F. M., Aghbashlo, M., Tabatabaei, M., & Karimi, K. (2022). Biomethane and biodiesel production from sunflower crop: A biorefinery perspective. Renewable Energy, 200, 1352–11361. doi: https://doi.org/10.1016/j.renene.2022.10.069
  • Liu, W.-J., Li, W.-W., Jiang, H., & Yu, H.-Q. (2017). Fates of Chemical Elements in Biomass during Its Pyrolysis. Chemical Reviews, 117(9), 6367‑6398. doi: https://doi.org/10.1021/acs.chemrev.6b00647
  • Ngangyo, Heya, M., Foroughbakhch, Pournavab, R., Carrillo, Parra, A., Zelinski, V., & Salas, Cruz, L. R. (2019). Elemental Composition and Flue Gas Emissions of Different Components from Five Semi Arid Woody Species in Pyrolysed and Non Pyrolysed Material. Sustainability, 11(5), 1245. doi:  https://doi.org/10.3390/su11051245
  • Onay Ö., ve Koçkar Ö. M. (1998). Fındık Kabuklarından Hızlı Piroliz Yöntemiyle Sentetik Sıvı Yakıt Eldesi [Production of liquid fuel from nut shell by fast pyrolysis]. Journal of Engineering and Architectural Faculty of Eskişehir Osmangazi University, 11(1), 72–81. doi: https://dergipark.org.tr/tr/pub/ogummf/issue/30463/329430
  • Osman, A. I., Farghali, M., Ihara, I., Elgarahy, A. M., Ayyad, A., Mehta, N., … Rooney D. W. (2023). Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environmental Chemistry Letters, 21(3), 1419 1476. doi: https://doi.org/10.1007/s10311-023-01573-7
  • Pfersich, J., Arauzo, P. J., Lucian, M., Modugno, P., Titirici, M-M., Luca, F., & Kruse, A. (2020). Hydrothermal conversion of spent sugar beets into high-value platform molecules. Molecules, 25(17), 3914. doi: https://doi.org/10.3390/molecules25173914
  • Pütün, A. E., Özbay, N., Koçkar, Ö. M., & Pütün, E. (1997). Fixed-bed Pyrolysis of cotton seed cake: Product Yield and Compositions, Energy Sources,19, 905-915. doi: https://doi.org/10.1080/00908319708908900
  • Pütün, A. E., Özcan, A., & Pütün E. (1999). Pyrolysis of Hazelnut Shells in a Fixed-bed Tubular Reactor: Yields and Structural Analysis of Bio-oil, J. Anal. Appl. Pyrolysis 52 (1), 33-49. doi: https://doi.org/10.1016/S0165-2370(99)00044-3
  • Rahmawati, Z., Santoso, L., Abdullah, W. N. W., Hamid, A., Jamari, N. L. A., Sugiarso, D., … Widati, A. A. (2024). Biomass as an alternative feedstock to oleochemicals. RSC Advances, 14(39), 28827 28843. doi: https://doi.org/10.1039/D4RA04481A
  • Yorgun, S., Şensöz, S., & Koçkar Ö. M. (2001a). Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass and Bioenergy, 20(2), 141–148. doi: https://doi.org/10.1016/S0961-9534(00)00064-7
  • Yorgun, S., Şensöz, S., & Koçkar, Ö. M. (2001b). Flash Pyrolysis of Sunflower oil Cake for Production of Liquid Fuels, J. Anal. Appl. Pyrolysis 60 (1), 1-12. doi: https://doi.org/10.1016/S0165-2370(00)00102-9
  • Zhou, Y., Remon, J., Pang, X., Jiang, Z., Liu, H., & Ding, W. (2023). Water based review: Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. Science of The Total Environment, 886,163920. doi: https://doi.org/10.1016/j.scitotenv.2023.163920
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji ve Yakmada Kimyasal ve Termal Süreçler
Bölüm Araştırma Makalesi
Yazarlar

Musa Şölener 0000-0002-8168-3768

Proje Numarası -
Gönderilme Tarihi 30 Eylül 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 3

Kaynak Göster

APA Şölener, M. (2025). CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(3), 2042-2046. https://doi.org/10.31796/ogummf.1794100
AMA Şölener M. CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE. ESOGÜ Müh Mim Fak Derg. Aralık 2025;33(3):2042-2046. doi:10.31796/ogummf.1794100
Chicago Şölener, Musa. “CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 3 (Aralık 2025): 2042-46. https://doi.org/10.31796/ogummf.1794100.
EndNote Şölener M (01 Aralık 2025) CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 3 2042–2046.
IEEE M. Şölener, “CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 3, ss. 2042–2046, 2025, doi: 10.31796/ogummf.1794100.
ISNAD Şölener, Musa. “CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/3 (Aralık2025), 2042-2046. https://doi.org/10.31796/ogummf.1794100.
JAMA Şölener M. CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE. ESOGÜ Müh Mim Fak Derg. 2025;33:2042–2046.
MLA Şölener, Musa. “CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2025, ss. 2042-6, doi:10.31796/ogummf.1794100.
Vancouver Şölener M. CHARACTERIZATION OF ALIPHATIC COMPOUNDS OBTAINED FROM PROLYSIS OF SUNFLOWER-EXTRACTED BAGASSE. ESOGÜ Müh Mim Fak Derg. 2025;33(3):2042-6.

20873      13565         15461