Araştırma Makalesi
BibTex RIS Kaynak Göster

Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi

Yıl 2011, Cilt: 24 Sayı: 2, 71 - 84, 30.12.2011

Öz

Bu çalışamada, 18 mm çaplı bakır bir borunun içine sıkı geçme
olarak konulan helisel bir türbülatörün ısı geçişine etkisi saysal olarak
incelenmiştir. Çalışma akışkanı su kabul edilmiştir (Pr=2,45). Reynolds sayısı 1000-20.000 aralığında alınmıştır. Dış ortamda kaynama olduğu kabul edilmiştir.
Boru boyu ve et kalınlığı sırasıyla 250 ve 1 mm’ dir. Üç farklı sarım sayısı (5, 10 ve 20) kabul edilmiştir. Korunum denklemleri Simple algoritmasõ ve türbülanslı akış modeli olarak Realizable k3 modeli kullanılarak çözülmüştür. Üç farklı
geometri için sayısal olarak bulunan Nusselt değerleri, Reynolds Sayısına bağlı olarak kaynaklardaki mevcut bağlantılardan elde edilen değerlerle
karşılaştırılmıştır.  Sonuç olarak;
helisel türbülatörlü boruların laminer akışta düz boruya göre ısı geçişini
arttırdığı türbülanslı akışta ise termodinamik açıdan verimli olmadığı görülmüştür.

Kaynakça

  • [1] K. Bilen, M. Cetin, H. Gul, T. Balta, ,“ The investigation of groove geometry effect on heat transfer for internally grooved tubes”, App Thermal Eng, Vol.29, No.4, pp.753-761, 2009. [2] A.N. Dravid, K.A. Smith, E.W. Merrill, Brain PLT., “Effect of secondary fluid on laminar flow heat transfer in helically coiled tubes”, AIChE J, Vol. 17, pp.1114–1122, 1971.
  • [3] G. Yang, F. Dong, and M.A. Ebadian, “Laminar forced convection in a helicoidal pipe with finite pitch”, Int J Heat Mass Transfer, Vol. 38, pp. 853–862, 1995.
  • [4] B. Zheng, C.X. Lin, M.A. Ebadian., “Combined laminar forced convection and thermal radiation in helical pipe”, Int J Heat Mass Transfer, Vol. 43, pp. 1067–1078, 2000.
  • [5] N. Acharya, M. Sen, H.C. Chang, “Analysis of heat transfer enhancement in coiled-tube heat exchangers”, Int J Heat Mass Transfer, Vol. 44, pp. 3189–3199, 2001.
  • [6] T.J. Rennie, G.S.V. Raghavan, “Laminar parallel flow in a tube-in-tube helical heat exchanger”, AIC 2002 Meeting CSAE/SCGR Program, 2002, Saskatoon, pp. 14-17.
  • [7] C.J. Bolinder, B. Sunden, “Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with finite pitch”, Int J Heat Mass Transfer, Vol. 39, pp. 3101– 3115, 1996.
  • [8] J.J.M. Sillekens, C.C.M. Rindt and A.A.Van Steenhoven, “Developing mixed convection in a coiled heat exchanger”, Int J Heat Mass Transfer, Vol. 41, pp. 61–72, 1998.
  • [9] C.X. Lin, M.A. Ebadian, “Developing turbulent convective heat transfer in helical pipes”, Int J Heat Mass Transfer, Vol. 40, pp. 3861–3873, 1997.
  • [10] C.X. Lin, M.A. Ebadian, “The effects of inlet turbulence on development of flow and heat transfer in helically coiled pipe”, Int J Heat Mass Transfer, Vol. 42, pp. 739–751, 1999.
  • [11] S. Garimella, D.E. Richards, R.N. Christensen, “Experimental investigation of heat transfer in coiled annular ducts”, J. Heat Transfer, Vol. 110, pp.329–336, 1988.
  • [12] A. Kumara, B.N. Prasad, “Investigation of twisted tape inserted solar water heaters heat transfer, friction factor and thermal performance results”, Renew Energy, Vol. 19, pp. 379–398, 2000.
  • [13] P. Promvonge, “Thermal augmentation in circular tube with twisted tape and wire coil turbulators”, Energ. Convers. Manag., Vol. 49, pp. 2949–2955, 2008.
  • [14] S.W. Chang, Y.J. Jan, J.S. Liou, “Turbulent heat transfer and pressure drop in tube fitted with serrated twisted-tape”, Int J Therm Sci., Vol. 46, pp.506–518, 2007.
  • [15] A.E. Bergles, “Techniques to augment heat transfer”, McGraw-Hill, New York, 1985.
  • [16] A.E. Bergles, “Some perspectives on enhanced heat transfer, second generation heat transfer technology”, ASME J Heat Transfer, Vol. 110, pp.1082–1096, 1988.
  • [17] S. Ray, A.W. Date., “Laminar flow and heat transfer through square duct with twisted tape insert”, Int J Heat Fluid Flow, Vol. 22, pp. 460–472, 2001.
  • [18] H.Gül, D.Evin, “ Heat Transfer enhancement in circular tubes using helical swirl generator insert at the entrance”, Int J Therm Sci., Vol. 46, pp. 1297–1303, 2007.
  • [19] N. U÷urlubilek, “Mini kanallar içerisinde tek fazlõ akõú ve õsõ taúõnõmõnõn sayõsal ve deneysel olarak incelenmesi”, Doktora tezi, Eskiúehir Osmangazi Üniversitesi, Eskiúehir, 2007, ss. 100.
  • [20] Fluent User’s Guide, Fluent Incorporated Centerra Resource Park, Lebanon, 1998.
  • [21] S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere, McGraw-Hill, Washington. DC., 1980.
  • [22] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, “A new k- eddy-viscosity model for high reynolds number turbulent flows-model development and validation”, Computers Fluids, Vol. 24, No:3, pp. 227-238, 1995.
  • [23] E.N. Sieder, G.E. Tate, “Heat transfer and pressure drop of liquids in tubes”, Ind. Eng. Chem., Vol.28, pp. 1429–1436,1936.
  • [24] V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow”, Int. Chem. Eng., Vol.16 (2), pp. 359–368,1976.
  • [25] F. P. Incropera, and D. P. De Witt, , “Isõ ve Kütle Geçiúinin Temelleri”, Türkçe Çevirisi, Literatür Yayõncõlõk, Ankara, 1996.
  • 26] H. Ito, “Friction factors for turbulent flow in curved pipes”, J. Basic Eng. Vol. 81, pp. 123-134, 1959.
  • [27] R. L Manlapaz., and S.W. Churchill, “Fully developed laminar convection from a helical coil”, Chem. Eng. Commun., Vol. 9, pp. 185-200, 1981.
  • [28] G. F. C. Rogers and Y. R. Mayhew, “Heat transfer and pressure loss in helically coiled tubes with turbulent flow”, Int. J. Heat Mass Transfer, Vol. 7, pp. 1207-1216, 1964.
  • [29] L. Wang, B. Sundén, “Performance comparison of some tube inserts”, Int. Comm. Heat Mass Transf., Vol. 29, No. 1, pp. 45–56, 2002.
  • [30] M.A. Akhavan-Behabadi , R. Kumar, M.R. Salimpour and R. Azimi, “Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube”, Int J Therm Sci., Vol. 49, pp. 373–379, 2010.

Numerıcal Investıgatıon Of The Effect Of Helıcal Turbulator On The Heat Transfer

Yıl 2011, Cilt: 24 Sayı: 2, 71 - 84, 30.12.2011

Öz

In this study, heat transfer in the case of a helical turbulator inserted in a copper tube with 18 mm hydraulic diameter is investigated numerically. The water is taken as the working fluid (Pr=2,45). Reynolds number is chosen 1000-20.000. It is considered the boiling condition at the outher surface of the pipe. The pipe length and wall thickness are considered 250 and 1 mm, respectively. Three different number of turns (5, 10 and 20) were accepted. The governing equations are solved using Simple algoritm and Realizable kmodel for turbulent regime. The Nusselt number calculated by numerical study and  existing correlations in literature are compared each other depending on Reynolds number for the three different geometry. In conclusion; it has been seen that, in the case of laminar flow, the pipe with helical  turbulator  increases the heat transfer more than the straight pipe, whereas in the case of turbulent flow,  it isn’t  productive in terms of thermodynamics.

Kaynakça

  • [1] K. Bilen, M. Cetin, H. Gul, T. Balta, ,“ The investigation of groove geometry effect on heat transfer for internally grooved tubes”, App Thermal Eng, Vol.29, No.4, pp.753-761, 2009. [2] A.N. Dravid, K.A. Smith, E.W. Merrill, Brain PLT., “Effect of secondary fluid on laminar flow heat transfer in helically coiled tubes”, AIChE J, Vol. 17, pp.1114–1122, 1971.
  • [3] G. Yang, F. Dong, and M.A. Ebadian, “Laminar forced convection in a helicoidal pipe with finite pitch”, Int J Heat Mass Transfer, Vol. 38, pp. 853–862, 1995.
  • [4] B. Zheng, C.X. Lin, M.A. Ebadian., “Combined laminar forced convection and thermal radiation in helical pipe”, Int J Heat Mass Transfer, Vol. 43, pp. 1067–1078, 2000.
  • [5] N. Acharya, M. Sen, H.C. Chang, “Analysis of heat transfer enhancement in coiled-tube heat exchangers”, Int J Heat Mass Transfer, Vol. 44, pp. 3189–3199, 2001.
  • [6] T.J. Rennie, G.S.V. Raghavan, “Laminar parallel flow in a tube-in-tube helical heat exchanger”, AIC 2002 Meeting CSAE/SCGR Program, 2002, Saskatoon, pp. 14-17.
  • [7] C.J. Bolinder, B. Sunden, “Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with finite pitch”, Int J Heat Mass Transfer, Vol. 39, pp. 3101– 3115, 1996.
  • [8] J.J.M. Sillekens, C.C.M. Rindt and A.A.Van Steenhoven, “Developing mixed convection in a coiled heat exchanger”, Int J Heat Mass Transfer, Vol. 41, pp. 61–72, 1998.
  • [9] C.X. Lin, M.A. Ebadian, “Developing turbulent convective heat transfer in helical pipes”, Int J Heat Mass Transfer, Vol. 40, pp. 3861–3873, 1997.
  • [10] C.X. Lin, M.A. Ebadian, “The effects of inlet turbulence on development of flow and heat transfer in helically coiled pipe”, Int J Heat Mass Transfer, Vol. 42, pp. 739–751, 1999.
  • [11] S. Garimella, D.E. Richards, R.N. Christensen, “Experimental investigation of heat transfer in coiled annular ducts”, J. Heat Transfer, Vol. 110, pp.329–336, 1988.
  • [12] A. Kumara, B.N. Prasad, “Investigation of twisted tape inserted solar water heaters heat transfer, friction factor and thermal performance results”, Renew Energy, Vol. 19, pp. 379–398, 2000.
  • [13] P. Promvonge, “Thermal augmentation in circular tube with twisted tape and wire coil turbulators”, Energ. Convers. Manag., Vol. 49, pp. 2949–2955, 2008.
  • [14] S.W. Chang, Y.J. Jan, J.S. Liou, “Turbulent heat transfer and pressure drop in tube fitted with serrated twisted-tape”, Int J Therm Sci., Vol. 46, pp.506–518, 2007.
  • [15] A.E. Bergles, “Techniques to augment heat transfer”, McGraw-Hill, New York, 1985.
  • [16] A.E. Bergles, “Some perspectives on enhanced heat transfer, second generation heat transfer technology”, ASME J Heat Transfer, Vol. 110, pp.1082–1096, 1988.
  • [17] S. Ray, A.W. Date., “Laminar flow and heat transfer through square duct with twisted tape insert”, Int J Heat Fluid Flow, Vol. 22, pp. 460–472, 2001.
  • [18] H.Gül, D.Evin, “ Heat Transfer enhancement in circular tubes using helical swirl generator insert at the entrance”, Int J Therm Sci., Vol. 46, pp. 1297–1303, 2007.
  • [19] N. U÷urlubilek, “Mini kanallar içerisinde tek fazlõ akõú ve õsõ taúõnõmõnõn sayõsal ve deneysel olarak incelenmesi”, Doktora tezi, Eskiúehir Osmangazi Üniversitesi, Eskiúehir, 2007, ss. 100.
  • [20] Fluent User’s Guide, Fluent Incorporated Centerra Resource Park, Lebanon, 1998.
  • [21] S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere, McGraw-Hill, Washington. DC., 1980.
  • [22] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, “A new k- eddy-viscosity model for high reynolds number turbulent flows-model development and validation”, Computers Fluids, Vol. 24, No:3, pp. 227-238, 1995.
  • [23] E.N. Sieder, G.E. Tate, “Heat transfer and pressure drop of liquids in tubes”, Ind. Eng. Chem., Vol.28, pp. 1429–1436,1936.
  • [24] V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow”, Int. Chem. Eng., Vol.16 (2), pp. 359–368,1976.
  • [25] F. P. Incropera, and D. P. De Witt, , “Isõ ve Kütle Geçiúinin Temelleri”, Türkçe Çevirisi, Literatür Yayõncõlõk, Ankara, 1996.
  • 26] H. Ito, “Friction factors for turbulent flow in curved pipes”, J. Basic Eng. Vol. 81, pp. 123-134, 1959.
  • [27] R. L Manlapaz., and S.W. Churchill, “Fully developed laminar convection from a helical coil”, Chem. Eng. Commun., Vol. 9, pp. 185-200, 1981.
  • [28] G. F. C. Rogers and Y. R. Mayhew, “Heat transfer and pressure loss in helically coiled tubes with turbulent flow”, Int. J. Heat Mass Transfer, Vol. 7, pp. 1207-1216, 1964.
  • [29] L. Wang, B. Sundén, “Performance comparison of some tube inserts”, Int. Comm. Heat Mass Transf., Vol. 29, No. 1, pp. 45–56, 2002.
  • [30] M.A. Akhavan-Behabadi , R. Kumar, M.R. Salimpour and R. Azimi, “Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube”, Int J Therm Sci., Vol. 49, pp. 373–379, 2010.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Nihal Uğurlubilek

İ. Yalçın Uralcan

Yayımlanma Tarihi 30 Aralık 2011
Kabul Tarihi 7 Temmuz 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 24 Sayı: 2

Kaynak Göster

APA Uğurlubilek, N., & Uralcan, İ. Y. (2011). Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 24(2), 71-84.
AMA Uğurlubilek N, Uralcan İY. Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi. ESOGÜ Müh Mim Fak Derg. Aralık 2011;24(2):71-84.
Chicago Uğurlubilek, Nihal, ve İ. Yalçın Uralcan. “Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 24, sy. 2 (Aralık 2011): 71-84.
EndNote Uğurlubilek N, Uralcan İY (01 Aralık 2011) Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 24 2 71–84.
IEEE N. Uğurlubilek ve İ. Y. Uralcan, “Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi”, ESOGÜ Müh Mim Fak Derg, c. 24, sy. 2, ss. 71–84, 2011.
ISNAD Uğurlubilek, Nihal - Uralcan, İ. Yalçın. “Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 24/2 (Aralık 2011), 71-84.
JAMA Uğurlubilek N, Uralcan İY. Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi. ESOGÜ Müh Mim Fak Derg. 2011;24:71–84.
MLA Uğurlubilek, Nihal ve İ. Yalçın Uralcan. “Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 24, sy. 2, 2011, ss. 71-84.
Vancouver Uğurlubilek N, Uralcan İY. Halisel Türbülatörün Isı Geçmişine Etkisinin Sayısal İncelenmesi. ESOGÜ Müh Mim Fak Derg. 2011;24(2):71-84.

20873 13565 13566 15461 13568  14913