Araştırma Makalesi
BibTex RIS Kaynak Göster

MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu

Yıl 2010, Cilt: 23 Sayı: 1, 63 - 81, 30.06.2010

Öz



Bu
makalede, mezo-gözenekli, nano-yapılı MCM-41 ve MCM-48 türü katalizörler doğrudan
hidrotermal sentez (DHS) ve oda sıcaklığında sentez (OSS) metotları ile
üretilmiştir. MCM-41 türü katalizörler için her iki sentez metodunun da
başarılı olduğu ve düzgün kristal gözenek yapısına sahip katalizörler
üretildiği görülmüştür. MCM-48 türü katalizörlerin sentezinde ise OSS metodu
ile sentezlenen katalizörün kristal gözenek yapısının önemli ölçüde bozulduğu
görülmüştür. BET sonuçları incelendiğinde, altıgen gözenekli MCM-41
katalizörleri için OSS ve kübik gözenekli MCM-48 katalizörleri için DHS
metodunun daha yüksek yüzey alanı ve gözenek hacmi değerleri verdiği tespit
edilmiştir.




Kaynakça

  • [1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli ve J.S. Beck, “Ordered mesoporous molecular synthesized by a liquid-crystal template mechanism”, Nature, Vol. 359, pp. 710-712, 1992.
  • [2] J.S. Beck, J.C.Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson ve E.W. Sheppard, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., Vol. 114, No. 27, pp. 10834–10843, 1992.
  • [3] G. Oye, J. Sjöblom ve M. Stöcker, “Synthesis, characterization and potential applications of new materials in mesoporous range”, Adv. In Coll. and Inter. Sci., Vol. 89-90, pp. 439-466, 2001.
  • [4] W. G. Shim, D. Y. Choi, S. P. Choi, J-W. Lee ve H. Moon, “Column Dynamics of Benzene Vapor Adsorption on MCM-48”, Vol. 11, No. 1, pp. 503-507, 2005.
  • [5] H. T. Janga, Y. Park, Y. S. Koc, J. Y. Lee ve B. Margandan, “Highly siliceous MCM-48 from rice husk ash for CO2 adsorption”, Int. J. Greenhouse Gas Control, Vol. 3, No. 5, pp. 545-549, 2009.
  • [6] X-W. Liu, L. Zhou, H. Chang, Y. Sun ve Y-P. Zhou, “Methane sorption on large-pore MCM-41 in the presence of water”, J. Porous Media, Vol. 9, No. 8, pp. 769-777, 2006.
  • [7] L- L.C. Juang, C-C. Wang ve C-K. Lee, “Adsorption of basic dyes onto MCM-41”, Chemosphere, Vol. 64, No. 11, pp. 1920-1928, 2006.
  • [8] Q. Qin, J. Ma ve K. Liu, “Adsorption of anionic dyes on ammonium-functionalized MCM- 41”, J. Hazard. Mater., Vol. 162, No. 1, pp. 133-139, 2009.
  • [9] S. G. Wang ve J. L. Li, “Thiol-functionalized MCM-48: An effective absorbent of mercury ions”, Chinese Chem. Lett., Vol. 17, No. 2, pp 221-224, 2006.
  • [10] J. W. Lee, D. L. Cho, W. G. Shim ve H. Moon, “Application of mesoporous MCM-48 and SBA-15 materials for the separation of biochemicals dissolved in aqueous solution”, Korean J. Chem. Eng., Vol. 21, No. 1, 2004.
  • [11] C. Liu, J. Wang ve Z. Rong, “Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al2O3 ceramic tube”, J. Membrane Sci., Vol. 287, No. 1, pp. 6-8, 2007.
  • [12] Y. Gucbilmez, T. Dogu ve S. Balci, “Activity comparison of MCM-41 and V-MCM-41 catalysts for ethanol selective oxidation and DRIFTS analysis”, Int. J. Chem. Reactor Eng., Vol. 7, A63, 2009.
  • [13] Y. Gucbilmez, T. Dogu ve S. Balci, “Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts”, Ind. Eng. Chem. Res., Vol. 45, No. 10, pp. 3496–3502, 2006.
  • [14]M. Pirouzmand, M.M. Amini ve N. Safari, “Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene”, J. Colloid Interface Sci., Vol. 319, No. 1, pp. 199-205, 2008.
  • [15]M. Chatterjee, F. Y. Zhao ve Y. Ikushima, “Effect of synthesis variables on the hydrogenation of cinnamaldehyde over Pt-MCM-48 in supercritical CO2 medium”, App. Catal. A: General, Vol. 262, No. 1, pp. 93-100, 2004.
  • [16] J. -M. Clacens, Y. Pouilloux ve J. Barrault, “Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts”, App. Catal. A: General, Vol. 227, No 1-2, pp. 181-190, 2002.
  • [17] A. Sakthivel, K. Komura ve Y. Sugi, “MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., Vol. 47, No. 8, pp. 2538–2544, 2008.
  • [18] V. Nieminen, N. Kumar, T. Salmi ve D. Yu. Murzin, “n-Butane isomerization over Pt–H– MCM-41”, Catal. Commun., Vol. 5, No. 1, pp. 15-19, 2004.
  • [19] M. Horňáček, P. Hudec ve A. Smiešková, “Synthesis and characterization of mesoporous molecular sieves”, Chem. Pap., Vol. 63, No 6, pp. 689-697, 2009.
  • [20] L. Wang, Y. Shao, J. Zhang ve M. Anpo, “Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves”, Res. Chem. Intermed., Vol. 34, No. 2-3, pp. 267- 286, 2008.
  • [21] Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido ve K. Takehiro, “Vanadium-containing MCM- 41 for partial oxidation of lower alkanes”, J. Catal., Vol. 202, No. 2, pp. 308–318, 2001.
  • [22] S. Wang, D. Wu, Y. Sun ve B. Zhong, ”The Synthesis of MCM-48 with high yields”, Mater. Res. Bull., Vol. 36, pp. 1717-1720, 2001.
  • [23] J. Choma, S. Pikus ve M. Jaroniec, “Adsorpsion characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hyrothermal treatment”, App. Surf. Sci., Vol. 252, No. 3, pp. 562-569, 2005.
  • [24] Q. Chai, W. Lin, F. Xiao, W. Pang, X. Chen ve B. Zou, “The Preparation of highly ordered MCM-41 with extremely low surfactant concentration”, Micropor. Mesopor. Mater., Vol. 32, No. 9, pp. 1-15, 1999.
  • [25] D. Kumar, K. Schumacher, C. du Fresne von Hohenesche, M. Grün ve K. K. Unger, “MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation”, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 187-188, pp. 109-116, 2001.
  • [26] C. Galacho, M.M.L. Ribeiro Carrott ve P.J.M. Carrott, “Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature”, Micropor. Mesopor. Mater., Vol. 108, No. 1-3, pp. 283-293, 2008.
  • [27] T.R. Gaydhankar, V. Samuel, R.K. Jha, R. Kumar ve P.N. Joshi, “Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica”, Mater. Res. Bullet., Vol. 42, No. 8, 2007, pp. 1473-1484, 2007.
  • [28] Q. Huo, D.I. Margolese ve G.D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., Vol. 8, No. 5, pp. 1147-1160, 1996.
  • [29]S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki ve T., Tatsumi, “The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process”, J. Am. Chem. Soc., Vol. 124, No. 47, pp. 13962-13963, 2002. [30] X.S. Zhao, G.Q. (Max) Lu ve G.J. Millar, “Advances in mesoporous molecular sieve MCM-41”, Ind. Eng. Chem. Res., Vol. 35, No. 7, 2075-2090, 1996.
  • [31] P. Selvam, S.K. Bhatia ve C.G. Sonwane, “Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves”, Ind. Eng. Chem. Res., Vol. 40, No. 15, pp. 3237-3261, 2001.
  • [32] A. Davidson, “Modifying the walls of mesoporous silicas prepared by supramoleculartemplating”, Curr. Opin. Colloid Interf. Sci., Vol. 7, No. 1-2, pp. 92-106, 2002.
  • [33] R.S. Somani, C.H. Ko, S.S. Han ve S.H. Cho, “Textural and structural properties of mesoporous silica synthesized under refluxing conditions”, J. Porous Mater., Vol. 12, No. 2, pp. 87-94, 2005.
  • [34] R.A.A. Melo, M.V. Giotto, J. Rocha ve E.A. Urquieta-Gonzalez, “MCM-41 ordered mesoporous molecular sieves synthesis and characterization”, Mat. Res., Vol. 2, No. 3, pp. 173-179, 1999.
  • [35] C.G. Wu, T. Bein, “Microwave synthesis of molecular sieve MCM-41”, Chem. Commun., No. 8, pp. 925-926, 1996.
  • [36] M. Bandyopadhyay ve H. Gies, “Synthesis of MCM-48 by microwave-hydrothermal process”, Comptes Rendus Chimie, Vol. 8, No. 3-4, pp. 621-626, 2005.
  • [37] A.S. Araujo ve M. Jaroniec, “Thermogravimetric monitoring of the MCM-41 synthesis”, Thermochimica Acta, Vol. 363, No. 1-2, pp. 175-180, 2000.
  • [38] L. Pei, K.-I. Kurumada, M. Tanigaki, M. Hiro ve K. Susa, “Effect of drying rate on mesoporous silica morphology templated from PEO-PPO-PEO block copolymer assemblies”, J. Mater. Sci., Vol. 39, pp. 4045 – 4047, 2004.
  • [39] W. Thitsartarna, E. Gularib ve S.Wongkasemjita, “Synthesis of Fe-MCM-41 from silatrane and FeCl3 via sol–gel process and its epoxidation acivity”, Appl. Organometal. Chem., Vol. 22, pp. 97–103, 2008.
  • [40] G. Zhang, L. Tao ve G. Zhang “MCM-41 prepared with ionic liquid and cethytrimethylammonium bromide as co-templates”, J. Mater. Sci., Vol. 24, No. 1, pp. 25- 29, 2009.
  • [41]P.I. Ravikovitch ve A.V. Neimark, “Relations between structural parameters and adsorption characterization of templated nanoporous materials with cubic symmetry”, Langmuir, Vol. 16, No. 6, pp. 2419-2423, 2000.
  • [42] Iler, R. K. The Chemistry of Silica; Wiley: New York, 1979.
  • [43] M. Kruk, M. Jaroniec ve A.J. Sayari, “Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes”, J. Phys. Chem. B, Vol. 101, No. 4, pp. 583-589, 1997.
  • [44] M. Kruk, M. Jaroniec, R. Ryoo ve S.H. Joo, S.H., “Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates”, J. Phys. Chem. B, Vol. 104, pp. 7960-7968, 2000.
  • [45] 45. M.P. Mokhonoana ve N.J. Coville, “Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions”, J. Sol- Gel Sci. Technol., in press, 2010. (http://www.springerlink.com/content/hq718712624k1232/fulltext.pdf)
  • [46] 46. J. Yu, J.L. Shi, L.Z. Wang, M.L. Ruan ve D.S. Yan, “Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ratio synthesis systems”, Mater. Lett., Vol. 48, No. 2, pp. 112-116, 2001.
  • [47]H. Chen ve Y. Wang, “Preparation of MCM-41 with high thermal stability and complementary textural porosity”, Ceram. Int., Vol. 28, pp. 541-547, 2002.

Production And Characterization Of MCM-41 And MCM-48 Type Catalysts

Yıl 2010, Cilt: 23 Sayı: 1, 63 - 81, 30.06.2010

Öz

In
this paper, mesoporous, nano-structured MCM-41 and MCM-48 type catalysts were
synthesized by direct hydrothermal synthesis (DHS) and room temperature
synthesis (RTS) methods. It was seen for MCM-41 type catalysts that; both DHS
and RTS methods were successful yielding catalysts with regular crystalline
pore structures. In the case of MCM-48 type catalysts, however, the catalyst
produced by the RTS method had significant loss of crystalline pore structure.
Investigation of BET results showed that MCM-41 catalysts synthesized by the
DHS method and MCM-48 catalysts synthesized by the RTS method had higher
surface area and higher pore volume values than their counterparts.




Kaynakça

  • [1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli ve J.S. Beck, “Ordered mesoporous molecular synthesized by a liquid-crystal template mechanism”, Nature, Vol. 359, pp. 710-712, 1992.
  • [2] J.S. Beck, J.C.Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson ve E.W. Sheppard, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., Vol. 114, No. 27, pp. 10834–10843, 1992.
  • [3] G. Oye, J. Sjöblom ve M. Stöcker, “Synthesis, characterization and potential applications of new materials in mesoporous range”, Adv. In Coll. and Inter. Sci., Vol. 89-90, pp. 439-466, 2001.
  • [4] W. G. Shim, D. Y. Choi, S. P. Choi, J-W. Lee ve H. Moon, “Column Dynamics of Benzene Vapor Adsorption on MCM-48”, Vol. 11, No. 1, pp. 503-507, 2005.
  • [5] H. T. Janga, Y. Park, Y. S. Koc, J. Y. Lee ve B. Margandan, “Highly siliceous MCM-48 from rice husk ash for CO2 adsorption”, Int. J. Greenhouse Gas Control, Vol. 3, No. 5, pp. 545-549, 2009.
  • [6] X-W. Liu, L. Zhou, H. Chang, Y. Sun ve Y-P. Zhou, “Methane sorption on large-pore MCM-41 in the presence of water”, J. Porous Media, Vol. 9, No. 8, pp. 769-777, 2006.
  • [7] L- L.C. Juang, C-C. Wang ve C-K. Lee, “Adsorption of basic dyes onto MCM-41”, Chemosphere, Vol. 64, No. 11, pp. 1920-1928, 2006.
  • [8] Q. Qin, J. Ma ve K. Liu, “Adsorption of anionic dyes on ammonium-functionalized MCM- 41”, J. Hazard. Mater., Vol. 162, No. 1, pp. 133-139, 2009.
  • [9] S. G. Wang ve J. L. Li, “Thiol-functionalized MCM-48: An effective absorbent of mercury ions”, Chinese Chem. Lett., Vol. 17, No. 2, pp 221-224, 2006.
  • [10] J. W. Lee, D. L. Cho, W. G. Shim ve H. Moon, “Application of mesoporous MCM-48 and SBA-15 materials for the separation of biochemicals dissolved in aqueous solution”, Korean J. Chem. Eng., Vol. 21, No. 1, 2004.
  • [11] C. Liu, J. Wang ve Z. Rong, “Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al2O3 ceramic tube”, J. Membrane Sci., Vol. 287, No. 1, pp. 6-8, 2007.
  • [12] Y. Gucbilmez, T. Dogu ve S. Balci, “Activity comparison of MCM-41 and V-MCM-41 catalysts for ethanol selective oxidation and DRIFTS analysis”, Int. J. Chem. Reactor Eng., Vol. 7, A63, 2009.
  • [13] Y. Gucbilmez, T. Dogu ve S. Balci, “Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts”, Ind. Eng. Chem. Res., Vol. 45, No. 10, pp. 3496–3502, 2006.
  • [14]M. Pirouzmand, M.M. Amini ve N. Safari, “Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene”, J. Colloid Interface Sci., Vol. 319, No. 1, pp. 199-205, 2008.
  • [15]M. Chatterjee, F. Y. Zhao ve Y. Ikushima, “Effect of synthesis variables on the hydrogenation of cinnamaldehyde over Pt-MCM-48 in supercritical CO2 medium”, App. Catal. A: General, Vol. 262, No. 1, pp. 93-100, 2004.
  • [16] J. -M. Clacens, Y. Pouilloux ve J. Barrault, “Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts”, App. Catal. A: General, Vol. 227, No 1-2, pp. 181-190, 2002.
  • [17] A. Sakthivel, K. Komura ve Y. Sugi, “MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., Vol. 47, No. 8, pp. 2538–2544, 2008.
  • [18] V. Nieminen, N. Kumar, T. Salmi ve D. Yu. Murzin, “n-Butane isomerization over Pt–H– MCM-41”, Catal. Commun., Vol. 5, No. 1, pp. 15-19, 2004.
  • [19] M. Horňáček, P. Hudec ve A. Smiešková, “Synthesis and characterization of mesoporous molecular sieves”, Chem. Pap., Vol. 63, No 6, pp. 689-697, 2009.
  • [20] L. Wang, Y. Shao, J. Zhang ve M. Anpo, “Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves”, Res. Chem. Intermed., Vol. 34, No. 2-3, pp. 267- 286, 2008.
  • [21] Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido ve K. Takehiro, “Vanadium-containing MCM- 41 for partial oxidation of lower alkanes”, J. Catal., Vol. 202, No. 2, pp. 308–318, 2001.
  • [22] S. Wang, D. Wu, Y. Sun ve B. Zhong, ”The Synthesis of MCM-48 with high yields”, Mater. Res. Bull., Vol. 36, pp. 1717-1720, 2001.
  • [23] J. Choma, S. Pikus ve M. Jaroniec, “Adsorpsion characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hyrothermal treatment”, App. Surf. Sci., Vol. 252, No. 3, pp. 562-569, 2005.
  • [24] Q. Chai, W. Lin, F. Xiao, W. Pang, X. Chen ve B. Zou, “The Preparation of highly ordered MCM-41 with extremely low surfactant concentration”, Micropor. Mesopor. Mater., Vol. 32, No. 9, pp. 1-15, 1999.
  • [25] D. Kumar, K. Schumacher, C. du Fresne von Hohenesche, M. Grün ve K. K. Unger, “MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation”, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 187-188, pp. 109-116, 2001.
  • [26] C. Galacho, M.M.L. Ribeiro Carrott ve P.J.M. Carrott, “Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature”, Micropor. Mesopor. Mater., Vol. 108, No. 1-3, pp. 283-293, 2008.
  • [27] T.R. Gaydhankar, V. Samuel, R.K. Jha, R. Kumar ve P.N. Joshi, “Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica”, Mater. Res. Bullet., Vol. 42, No. 8, 2007, pp. 1473-1484, 2007.
  • [28] Q. Huo, D.I. Margolese ve G.D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., Vol. 8, No. 5, pp. 1147-1160, 1996.
  • [29]S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki ve T., Tatsumi, “The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process”, J. Am. Chem. Soc., Vol. 124, No. 47, pp. 13962-13963, 2002. [30] X.S. Zhao, G.Q. (Max) Lu ve G.J. Millar, “Advances in mesoporous molecular sieve MCM-41”, Ind. Eng. Chem. Res., Vol. 35, No. 7, 2075-2090, 1996.
  • [31] P. Selvam, S.K. Bhatia ve C.G. Sonwane, “Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves”, Ind. Eng. Chem. Res., Vol. 40, No. 15, pp. 3237-3261, 2001.
  • [32] A. Davidson, “Modifying the walls of mesoporous silicas prepared by supramoleculartemplating”, Curr. Opin. Colloid Interf. Sci., Vol. 7, No. 1-2, pp. 92-106, 2002.
  • [33] R.S. Somani, C.H. Ko, S.S. Han ve S.H. Cho, “Textural and structural properties of mesoporous silica synthesized under refluxing conditions”, J. Porous Mater., Vol. 12, No. 2, pp. 87-94, 2005.
  • [34] R.A.A. Melo, M.V. Giotto, J. Rocha ve E.A. Urquieta-Gonzalez, “MCM-41 ordered mesoporous molecular sieves synthesis and characterization”, Mat. Res., Vol. 2, No. 3, pp. 173-179, 1999.
  • [35] C.G. Wu, T. Bein, “Microwave synthesis of molecular sieve MCM-41”, Chem. Commun., No. 8, pp. 925-926, 1996.
  • [36] M. Bandyopadhyay ve H. Gies, “Synthesis of MCM-48 by microwave-hydrothermal process”, Comptes Rendus Chimie, Vol. 8, No. 3-4, pp. 621-626, 2005.
  • [37] A.S. Araujo ve M. Jaroniec, “Thermogravimetric monitoring of the MCM-41 synthesis”, Thermochimica Acta, Vol. 363, No. 1-2, pp. 175-180, 2000.
  • [38] L. Pei, K.-I. Kurumada, M. Tanigaki, M. Hiro ve K. Susa, “Effect of drying rate on mesoporous silica morphology templated from PEO-PPO-PEO block copolymer assemblies”, J. Mater. Sci., Vol. 39, pp. 4045 – 4047, 2004.
  • [39] W. Thitsartarna, E. Gularib ve S.Wongkasemjita, “Synthesis of Fe-MCM-41 from silatrane and FeCl3 via sol–gel process and its epoxidation acivity”, Appl. Organometal. Chem., Vol. 22, pp. 97–103, 2008.
  • [40] G. Zhang, L. Tao ve G. Zhang “MCM-41 prepared with ionic liquid and cethytrimethylammonium bromide as co-templates”, J. Mater. Sci., Vol. 24, No. 1, pp. 25- 29, 2009.
  • [41]P.I. Ravikovitch ve A.V. Neimark, “Relations between structural parameters and adsorption characterization of templated nanoporous materials with cubic symmetry”, Langmuir, Vol. 16, No. 6, pp. 2419-2423, 2000.
  • [42] Iler, R. K. The Chemistry of Silica; Wiley: New York, 1979.
  • [43] M. Kruk, M. Jaroniec ve A.J. Sayari, “Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes”, J. Phys. Chem. B, Vol. 101, No. 4, pp. 583-589, 1997.
  • [44] M. Kruk, M. Jaroniec, R. Ryoo ve S.H. Joo, S.H., “Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates”, J. Phys. Chem. B, Vol. 104, pp. 7960-7968, 2000.
  • [45] 45. M.P. Mokhonoana ve N.J. Coville, “Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions”, J. Sol- Gel Sci. Technol., in press, 2010. (http://www.springerlink.com/content/hq718712624k1232/fulltext.pdf)
  • [46] 46. J. Yu, J.L. Shi, L.Z. Wang, M.L. Ruan ve D.S. Yan, “Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ratio synthesis systems”, Mater. Lett., Vol. 48, No. 2, pp. 112-116, 2001.
  • [47]H. Chen ve Y. Wang, “Preparation of MCM-41 with high thermal stability and complementary textural porosity”, Ceram. Int., Vol. 28, pp. 541-547, 2002.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Yeşim Güçbilmez

Yayımlanma Tarihi 30 Haziran 2010
Kabul Tarihi 16 Mart 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 23 Sayı: 1

Kaynak Göster

APA Güçbilmez, Y. (2010). MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 23(1), 63-81.
AMA Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. Haziran 2010;23(1):63-81.
Chicago Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 23, sy. 1 (Haziran 2010): 63-81.
EndNote Güçbilmez Y (01 Haziran 2010) MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 23 1 63–81.
IEEE Y. Güçbilmez, “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”, ESOGÜ Müh Mim Fak Derg, c. 23, sy. 1, ss. 63–81, 2010.
ISNAD Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 23/1 (Haziran 2010), 63-81.
JAMA Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. 2010;23:63–81.
MLA Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 23, sy. 1, 2010, ss. 63-81.
Vancouver Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. 2010;23(1):63-81.

20873 13565 13566 15461 13568  14913