Araştırma Makalesi
BibTex RIS Kaynak Göster

RELÜKTANS TÜRÜ İVMELENDİRİCİ DEVRE MODELİ İÇİN LAGRANGE TANIMLAMASI VE SONLU ELEMAN ANALİZLERİ

Yıl 2020, Cilt: 28 Sayı: 2, 94 - 106, 31.08.2020
https://doi.org/10.31796/ogummf.674000

Öz

Relüktans türü ivmelendirici devre modeli için uygun bir Lagrange tanımı sunulmuştur. Magnetostatik sonlu eleman analizi yapan genel amaçlı programların, sunulan model üzerinde ne kadar etkin bir şekilde kullanılabileceği gösterilmiştir. Bir sistemin elektrik devre modeli, sistemi oluşturan parçaların davranışlarını, mekanik parçaların elektriksel eşdeğerleri de dahil olmak üzere akım, gerilim, güç ve enerji dağılımı gibi karşılıklarıyla kolay algılanabilir bir şekilde ortaya sermektedir. Bu tür tahrik sistemleri durağan çalışma şartlarında oldukça basit dinamiğe sahip olmakla birlikte geçiş durumlarında oldukça komplex davranış gösterirler ve çalışma dinamiklerinin anlaşılmaları güçtür. Çalışma, böyle bir yaklaşımın tam bir elektromanyetik alt yapıya sahip olmayan araştırmacılara doymuş veya doymamış relüktans tipi doğrusal veya dairesel hareket eden motor veya elektrikli tahrik sistemlerinin ve dinamik yapılarının daha iyi anlaşılabilmesi için yapılmıştır. Önerilen model ve dinamik davranışlarının sonlu eleman analizleri ile çözümü, bir relüktans ivmelendirici düzeneği gerçeklenip kondansatör boşaltmalı bir devre ile sürülerek doğrulanmıştır.

Kaynakça

  • Balikci A, Zabar Z., Birenbaum L., and Czarkowski D. (2007). On the Design of Coilguns for Super-Velocity Launchers, IEEE Transactions On Magnetics, Vol. 43, No. 1
  • Baltzis KB. (2010). The finite element method magnetics (FEMM) freeware package: May it serve as an educational tool in teaching electromagnetics? Educ Inf Technol ; 15: 19. https://doi.org/10.1007/s10639-008-9082-8
  • Barrera T, Beard R. (2014). Exploration and Verification Analysis of a Linear Reluctance Accelerator. 17th International Symposium on Electromagnetic Launch Technology (EML), La Jolla, CA, USA, DOI10.1109/EML.
  • Daldaban F, Sarı V. (2016) The Optimization of a Projectile from a three-coil reluctance launcher, Turk J Elec Eng & Comp Sci, (2016) 24: 2771 – 2788, TÜBİTAK, doi:10.3906/elk-1404-18
  • Griffiths DJ. (2012) Resource Letter EM-1: Electromagnetic Momentum. Am. J. Phys. 80, 7; doi: 10.1119/1.3641979.
  • Goldstein H, Poole CP, Safko JL. (2002). Classical Mechanics. 3rd ed. Pearson.
  • Holzgrafe J, Lintz N, Eyre N, Patterson J. (2012). Effect of Projectile Design on Coil Gun Performance, Franklin W. Olin College of Engineering
  • Kaye RJ. (2005). Operational requirements and issues for coilgun electromagnetic launchers. IEEE T Magn; 41:194-199.
  • Khandekar S. (2016). Single-Stage Reluctance Type Coilgun, International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE), Vol. 3, Issue 3, pp: (31-36)
  • Klimas M, Grabowski D, Piaskowy A. (2016). Efficiency Analysis of an electromagnetic launcher. Elektryka, Silesian University of Technology Publishing, Poland.
  • McNab IR. (1999). Early Electric Gun Research. IEEE Transactions on magnetics, vol 35:1 pp.250-261.
  • De Medeiros LH, Reyne G, Meunier G. (1998). Comparison of Global Force Calculations on Permanent Magnets. IEEE Transactions on Magnetics, vol.34, NO.5.
  • Meeker D. (2004). Finite element method magnetics: User’s manual. 4th ver. , Google Scholar. Rashid MH. (2011). Power Electronics Handbook: Devices, Circuits, and Applications. 3rd ed. USA: Elsevier.
  • Slade WG. (2005). A Simple Unified Physical Model for a Reluctance Accelerator. IEEE Transactions on Magnetics, 41(11):4270 - 4276
  • Slade WG. (2006). Fast finite-element solver for a reluctance mass accelerator. IEEE Transactions on Magnetics, 42(9): 2184 - 2192

LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL

Yıl 2020, Cilt: 28 Sayı: 2, 94 - 106, 31.08.2020
https://doi.org/10.31796/ogummf.674000

Öz

Lagrangian description of electrical circuit model of a reluctance type accelerator system is introduced. The effectiveness of the general purpose magnetostatic finite element analysis (FEA) tools on the introduced model is demonstrated. Electrical equivalent circuit model of the system lays out many properties of the system in terms of voltage, current, power or energy distributions of electrical components, and also electrical equivalent of the mechanical components, in an easily perceivable form. These type of actuators are simple mechanisms when they are in steady state. However, when they are in transient, their dynamics may become very complex. The aim of the study is to show how this approach allows many researchers without the full electromagnetic background, to model and understand the dynamics of the reluctance type linear or rotary motor or actuators whether they are saturated or not. To exhibit the validity of the proposed model and solution of dynamic behaviors with FEA, it is verified on a basic capacitor discharge type driver circuit including the electromagnetic accelerator coil and projectile.

Kaynakça

  • Balikci A, Zabar Z., Birenbaum L., and Czarkowski D. (2007). On the Design of Coilguns for Super-Velocity Launchers, IEEE Transactions On Magnetics, Vol. 43, No. 1
  • Baltzis KB. (2010). The finite element method magnetics (FEMM) freeware package: May it serve as an educational tool in teaching electromagnetics? Educ Inf Technol ; 15: 19. https://doi.org/10.1007/s10639-008-9082-8
  • Barrera T, Beard R. (2014). Exploration and Verification Analysis of a Linear Reluctance Accelerator. 17th International Symposium on Electromagnetic Launch Technology (EML), La Jolla, CA, USA, DOI10.1109/EML.
  • Daldaban F, Sarı V. (2016) The Optimization of a Projectile from a three-coil reluctance launcher, Turk J Elec Eng & Comp Sci, (2016) 24: 2771 – 2788, TÜBİTAK, doi:10.3906/elk-1404-18
  • Griffiths DJ. (2012) Resource Letter EM-1: Electromagnetic Momentum. Am. J. Phys. 80, 7; doi: 10.1119/1.3641979.
  • Goldstein H, Poole CP, Safko JL. (2002). Classical Mechanics. 3rd ed. Pearson.
  • Holzgrafe J, Lintz N, Eyre N, Patterson J. (2012). Effect of Projectile Design on Coil Gun Performance, Franklin W. Olin College of Engineering
  • Kaye RJ. (2005). Operational requirements and issues for coilgun electromagnetic launchers. IEEE T Magn; 41:194-199.
  • Khandekar S. (2016). Single-Stage Reluctance Type Coilgun, International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE), Vol. 3, Issue 3, pp: (31-36)
  • Klimas M, Grabowski D, Piaskowy A. (2016). Efficiency Analysis of an electromagnetic launcher. Elektryka, Silesian University of Technology Publishing, Poland.
  • McNab IR. (1999). Early Electric Gun Research. IEEE Transactions on magnetics, vol 35:1 pp.250-261.
  • De Medeiros LH, Reyne G, Meunier G. (1998). Comparison of Global Force Calculations on Permanent Magnets. IEEE Transactions on Magnetics, vol.34, NO.5.
  • Meeker D. (2004). Finite element method magnetics: User’s manual. 4th ver. , Google Scholar. Rashid MH. (2011). Power Electronics Handbook: Devices, Circuits, and Applications. 3rd ed. USA: Elsevier.
  • Slade WG. (2005). A Simple Unified Physical Model for a Reluctance Accelerator. IEEE Transactions on Magnetics, 41(11):4270 - 4276
  • Slade WG. (2006). Fast finite-element solver for a reluctance mass accelerator. IEEE Transactions on Magnetics, 42(9): 2184 - 2192
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Gökhan Dındış 0000-0001-5642-7212

Yayımlanma Tarihi 31 Ağustos 2020
Kabul Tarihi 3 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 28 Sayı: 2

Kaynak Göster

APA Dındış, G. (2020). LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 28(2), 94-106. https://doi.org/10.31796/ogummf.674000
AMA Dındış G. LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL. ESOGÜ Müh Mim Fak Derg. Ağustos 2020;28(2):94-106. doi:10.31796/ogummf.674000
Chicago Dındış, Gökhan. “LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 28, sy. 2 (Ağustos 2020): 94-106. https://doi.org/10.31796/ogummf.674000.
EndNote Dındış G (01 Ağustos 2020) LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28 2 94–106.
IEEE G. Dındış, “LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL”, ESOGÜ Müh Mim Fak Derg, c. 28, sy. 2, ss. 94–106, 2020, doi: 10.31796/ogummf.674000.
ISNAD Dındış, Gökhan. “LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28/2 (Ağustos 2020), 94-106. https://doi.org/10.31796/ogummf.674000.
JAMA Dındış G. LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL. ESOGÜ Müh Mim Fak Derg. 2020;28:94–106.
MLA Dındış, Gökhan. “LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 28, sy. 2, 2020, ss. 94-106, doi:10.31796/ogummf.674000.
Vancouver Dındış G. LAGRANGIAN DESCRIPTION AND FINITE ELEMENT ANALYSIS OF RELUCTANCE ACCELERATOR CIRCUIT MODEL. ESOGÜ Müh Mim Fak Derg. 2020;28(2):94-106.

20873 13565 13566 15461 13568  14913