Araştırma Makalesi
BibTex RIS Kaynak Göster

ARTAN SICAKLIK ETKİSİNDEKİ BETONARME TÜNEL SEGMANLARININ SEM İLE SAYISAL OLARAK İNCELENMESİ

Yıl 2022, Cilt: 30 Sayı: 2, 289 - 299, 18.08.2022
https://doi.org/10.31796/ogummf.1100141

Öz

Son zamanlarda meydana gelen yangın olayları nedeniyle yapı mühendisleri arasında betonarme tünel hatlarının yangına dayanıklı tasarımına ilgi giderek artmaktadır. Literatürde geleneksel betonarme (RC) ve hibrit fiber donatılı beton (HFRC) tünel segmanlarının yangın davranışına odaklanan sınırlı sayıda deneysel çalışma sunulmuştur. Ancak, yüksek sıcaklık etkisindeki RC kalkan tünel segmanları ile ilgili kapsamlı bir sayısal çalışma bulunmamaktadır. Bu nedenle, bu çalışma, RC kalkan tünel segmanlarının yangın davranışının değerlendirilmesi için bir 3B sonlu eleman modeli (SEM) oluşturmayı amaçlamaktadır. Sunulan SEM'in ilk aşamasında, RC tünel segmentinde meydana gelen sıcaklık dağılımı, gerçekleştirilen ısı transferi analizi ile değerlendirilmiştir. İkinci aşamada, düşey yük ve artan sıcaklığın birleşik etkisi altında RC tünel segmentinin yük-deplasman davranışını hesaplamak için gerilme analizi yapılmıştır. SEM'den elde edilen sonuçlar literatürde yer alan deneysel bir çalışma ile karşılaştırılmıştır. Sayısal analizin deneysel sonuçlarla uyumlu olması, sunulan FEM'in yüksek sıcaklığa maruz RC kalkan tünel segmanlarının davranışının belirlenmesi için kullanılabileceğini göstermiştir.

Kaynakça

  • ABAQUS, (2014). ABAQUS/Standard user’s manual version 6.14, Hibbitt, Karlsson, & Sorensen, Inc.
  • ASTM, (2015). Standard test methods for fire tests of building construction and materials, West Conshohocken (PA): ASTM E119.
  • Birtel, V. & Mark, P. (2006). Parameterised finite element modelling of RC beam shear failure. Proceedings of the 19th Annual International ABAQUS Users’ Conference, Boston.
  • Boxheimer, S., Knitl, J. & Dehn, F. (2009), Fire test on precast tunnel segments for the Liefkenshoekspoortunnel in Antwerp. Proceedings of 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig.
  • Caner, A. & Böncü, A. (2009). Structural Fire Safety of Circular Concrete Railroad Tunnel Linings. Journal of Structural Engineering, 135, 9, 1081–1092. doi: 10.1061/(asce)st.1943-541x.0000045.
  • CEN (European committee for standardization). Eurocode 1: Actions on structures. EN 1991-1-1:2002.
  • CEN (European committee for standardization). Eurocode 2: Design of concrete structures – Part 1-2: General rules – structural fire design. EN1992-1-2; 2004.
  • CEN (European committee for standardization), Eurocode 3: Design of steel structures – Part 1-2: General rules – structural fire design. EN1993-1-2; 2005.
  • Dai, J.-G., Gao, W.-Y., & Teng, J. G. (2015). Finite Element Modeling of Insulated FRP-Strengthened RC Beams Exposed to Fire. Journal of Composites for Construction, 19, 2, 1-15. doi: 10.1061/(ASCE)CC.1943-5614.0000509.
  • Gao, W. Y., Dai, J. G., Teng, J. G., & Chen, G. M. (2013). Finite element modeling of reinforced concrete beams exposed to fire. Engineering Structures, 52, 488–501. doi:10.1016/j.engstruct.2013.03.017.
  • Guerrieri, M., Sanabria, C., Lee, W. M., Pazmino, E. & Patel, R. (2020). Design of the metro tunnel project tunnel linings for fire testing. Structural Concrete, April, 1–29. doi: 10.1002/suco.202000140
  • Haack, A. (1992). Fire protection in traffic tunnels- initial findings from large-scale tests. Tunnelling and Underground Space Technology, 7, 4, 363–375. doi: 10.1016/0886-7798(92)90066-Q.
  • Haack, A. (1998). Fire protection in traffic tunnels: General aspects and results of the EUREKA project. Tunnelling and Underground Space Technology, 13, 4, 377–381. doi: 10.1016/S0886-7798(98)00080-7.
  • Hajiloo, H. & Green, M. F. (2018). GFRP reinforced concrete slabs in fire: Finite element modelling. Engineering Structures, 183, October 2018, 1109–1120. doi: 10.1016/j.engstruct.2019.01.028.
  • International Tunnelling and Underground Space Association (ITA), 2005. Guidelines for structural fire resistance for road tunnels.
  • ISO, (1999). Fire resistance tests-Elements of building construction-Part 1: General requirements, Geneva (Switzerland): ISO 834-1.
  • Kaundinya, I., Dehn, F., Nause, P. & Juknat, M. (2009). Fire tests at large-scale specimens of ZTV-ING conform fiber-modified concrete for inner shells of road tunnels. Proceedings of 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig.
  • Li, C., Hao, H. & Bi, K. (2017). Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading. Engineering Structures. 148, 373–386. doi: 10.1016/j.engstruct.2017.06.062
  • Lönnermark A. (2005). On the characteristics of fires in tunnels (Doctoral thesis). Lund University, Sweden.
  • National Fire Protection Association (NFPA), (1998). NFPA 502 standard for road tunnels, bridges, and other limited access highways, NFPA 502.
  • Pagani, R., Bocciarelli, M., Carvelli, V., & Pisani, M. A. (2014). Modelling high temperature effects on bridge slabs reinforced with GFRP rebars. Engineering Structures, 81, 318–326, doi: 10.1016/j.engstruct.2014.10.012.
  • Richter, E. (2005). Fire test on single-shell tunnel segments made of a new high-performance fireproof concrete. Workshop: Fire Design of Concrete Structures: What now.
  • Siemon, M., & Zehfuß, J. (2018). Behavior of structural tunnel elements exposed to fire and mechanical loading. Journal of Structural Fire Engineering, 9, 2, 138–146. doi: 10.1108/JSFE-01-2017-0020.
  • Yan, Z. G., Zhu, H. H., Ju, J. W. & Ding, W. Q. (2012). Full-scale fire tests of RC metro shield TBM tunnel linings. Construction and Building Materials, 36, 484–494. doi: 10.1016/j.conbuildmat.2012.06.006.
  • Yan, Z. G., Shen, Y., Zhu, H. H., Li, X. J., & Lu, Y. (2015). Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature. Fire Safety Journal, 71, 86–99, 2015, doi: 10.1016/j.firesaf.2014.11.009.
  • Yasuda, F. & Ono, K. (2004). Fire protection for TBM shield tunnel lining. Tunnelling and Underground Space Technology, 19, 4–5, 317. doi: 10.1016/j.tust.2004.01.018.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Sezer, C. (2018), “Low-velocity impact behaviour of two way RC slab strengthening with CFRP strips,” Construction and Building Materials, 186, 1046–1063. doi: 10.1016/j.conbuildmat.2018.08.027.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Hoşkal, V. (2020). Experimental and numerical investigation of impact behavior of reinforced concrete slab with different support conditions. Structural Concrete, September,1–19. doi: 10.1002/suco.202000216.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Kacaran, G. (2020). Experimental Investigation of Impact Behaviour of RC Slab with Different Reinforcement Ratios. KSCE Journal of Civil Engineering, 24, 1, 241–254. doi: 10.1007/s12205-020-1168-x.
  • Alhawat, H., Hamid, R., Baharom, S., Azmi, M. R. & Kaish, A. B. M. A. (2021). Thermal behaviour of unloaded concrete tunnel lining through an innovative large-scale tunnel fire experimental testing setup. Construction and Building Materials, 283,122718. doi: 10.1016/j.conbuildmat.2021.122718.
  • Hua, N., Khorasani, N. E., Tessari, A. & Ranade, R. (2022). Experimental study of fire damage to reinforced concrete tunnel slabs. Fire Safety Journal, 127, 103504. doi: 10.1016/j.firesaf.2021.103504.
  • Jiang, L., Orabi, M. A., Jiang, J. & Usmani, A. (2021). Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 234, 111977. doi: 10.1016/j.engstruct.2021.111977.
  • Mirza, O. & Uy, B. (2009). Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures. Journal of Constructional Steel Research, 65, 662–74. doi: 10.1016/j.jcsr.2008.03.008.
  • Shen, Y., Zhu, H., Yan, Z., Zhou, L. & Lu, Y. (2021). Semi-analytical thermo-mechanical model for the shield tunnel segmental joint subjected to elevated temperatures. Tunnelling and Underground Space Technology, 118, 104170. doi: 10.1016/j.tust.2021.104170.

NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM

Yıl 2022, Cilt: 30 Sayı: 2, 289 - 299, 18.08.2022
https://doi.org/10.31796/ogummf.1100141

Öz

There has been increasing concern about the fire-resistant design of reinforced concrete tunnel lines among structural engineers due to the fire incidents that occurred recently. A limited number of experimental works focused on the fire behavior of the conventional reinforced concrete (RC) and hybrid fiber reinforced concrete (HFRC) tunnel segments have been presented in the literature. However, there is no comprehensive numerical study related to RC shield tunnel segments under the effect of elevated temperature. Thus, this study intends to establish a 3D finite element model (FEM) for the evaluation of the fire behavior of RC shield tunnel segments. At the first stage of the presented FEM, the temperature distribution that occurred in the RC tunnel segment was evaluated with a heat transfer analysis carried out. In the second stage, the stress analysis was conducted to calculate the load-displacement behavior of the RC tunnel segment under the combined effect of the gravity load and the elevated temperature. The results obtained from the FEM were compared with an experimental work existing in the literature. The fact that numerical analysis is compatible with experimental results proves that the presented FEM can be used in the determination of the behavior of RC shield tunnel segments subjected to elevated temperature.

Kaynakça

  • ABAQUS, (2014). ABAQUS/Standard user’s manual version 6.14, Hibbitt, Karlsson, & Sorensen, Inc.
  • ASTM, (2015). Standard test methods for fire tests of building construction and materials, West Conshohocken (PA): ASTM E119.
  • Birtel, V. & Mark, P. (2006). Parameterised finite element modelling of RC beam shear failure. Proceedings of the 19th Annual International ABAQUS Users’ Conference, Boston.
  • Boxheimer, S., Knitl, J. & Dehn, F. (2009), Fire test on precast tunnel segments for the Liefkenshoekspoortunnel in Antwerp. Proceedings of 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig.
  • Caner, A. & Böncü, A. (2009). Structural Fire Safety of Circular Concrete Railroad Tunnel Linings. Journal of Structural Engineering, 135, 9, 1081–1092. doi: 10.1061/(asce)st.1943-541x.0000045.
  • CEN (European committee for standardization). Eurocode 1: Actions on structures. EN 1991-1-1:2002.
  • CEN (European committee for standardization). Eurocode 2: Design of concrete structures – Part 1-2: General rules – structural fire design. EN1992-1-2; 2004.
  • CEN (European committee for standardization), Eurocode 3: Design of steel structures – Part 1-2: General rules – structural fire design. EN1993-1-2; 2005.
  • Dai, J.-G., Gao, W.-Y., & Teng, J. G. (2015). Finite Element Modeling of Insulated FRP-Strengthened RC Beams Exposed to Fire. Journal of Composites for Construction, 19, 2, 1-15. doi: 10.1061/(ASCE)CC.1943-5614.0000509.
  • Gao, W. Y., Dai, J. G., Teng, J. G., & Chen, G. M. (2013). Finite element modeling of reinforced concrete beams exposed to fire. Engineering Structures, 52, 488–501. doi:10.1016/j.engstruct.2013.03.017.
  • Guerrieri, M., Sanabria, C., Lee, W. M., Pazmino, E. & Patel, R. (2020). Design of the metro tunnel project tunnel linings for fire testing. Structural Concrete, April, 1–29. doi: 10.1002/suco.202000140
  • Haack, A. (1992). Fire protection in traffic tunnels- initial findings from large-scale tests. Tunnelling and Underground Space Technology, 7, 4, 363–375. doi: 10.1016/0886-7798(92)90066-Q.
  • Haack, A. (1998). Fire protection in traffic tunnels: General aspects and results of the EUREKA project. Tunnelling and Underground Space Technology, 13, 4, 377–381. doi: 10.1016/S0886-7798(98)00080-7.
  • Hajiloo, H. & Green, M. F. (2018). GFRP reinforced concrete slabs in fire: Finite element modelling. Engineering Structures, 183, October 2018, 1109–1120. doi: 10.1016/j.engstruct.2019.01.028.
  • International Tunnelling and Underground Space Association (ITA), 2005. Guidelines for structural fire resistance for road tunnels.
  • ISO, (1999). Fire resistance tests-Elements of building construction-Part 1: General requirements, Geneva (Switzerland): ISO 834-1.
  • Kaundinya, I., Dehn, F., Nause, P. & Juknat, M. (2009). Fire tests at large-scale specimens of ZTV-ING conform fiber-modified concrete for inner shells of road tunnels. Proceedings of 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig.
  • Li, C., Hao, H. & Bi, K. (2017). Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading. Engineering Structures. 148, 373–386. doi: 10.1016/j.engstruct.2017.06.062
  • Lönnermark A. (2005). On the characteristics of fires in tunnels (Doctoral thesis). Lund University, Sweden.
  • National Fire Protection Association (NFPA), (1998). NFPA 502 standard for road tunnels, bridges, and other limited access highways, NFPA 502.
  • Pagani, R., Bocciarelli, M., Carvelli, V., & Pisani, M. A. (2014). Modelling high temperature effects on bridge slabs reinforced with GFRP rebars. Engineering Structures, 81, 318–326, doi: 10.1016/j.engstruct.2014.10.012.
  • Richter, E. (2005). Fire test on single-shell tunnel segments made of a new high-performance fireproof concrete. Workshop: Fire Design of Concrete Structures: What now.
  • Siemon, M., & Zehfuß, J. (2018). Behavior of structural tunnel elements exposed to fire and mechanical loading. Journal of Structural Fire Engineering, 9, 2, 138–146. doi: 10.1108/JSFE-01-2017-0020.
  • Yan, Z. G., Zhu, H. H., Ju, J. W. & Ding, W. Q. (2012). Full-scale fire tests of RC metro shield TBM tunnel linings. Construction and Building Materials, 36, 484–494. doi: 10.1016/j.conbuildmat.2012.06.006.
  • Yan, Z. G., Shen, Y., Zhu, H. H., Li, X. J., & Lu, Y. (2015). Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature. Fire Safety Journal, 71, 86–99, 2015, doi: 10.1016/j.firesaf.2014.11.009.
  • Yasuda, F. & Ono, K. (2004). Fire protection for TBM shield tunnel lining. Tunnelling and Underground Space Technology, 19, 4–5, 317. doi: 10.1016/j.tust.2004.01.018.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Sezer, C. (2018), “Low-velocity impact behaviour of two way RC slab strengthening with CFRP strips,” Construction and Building Materials, 186, 1046–1063. doi: 10.1016/j.conbuildmat.2018.08.027.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Hoşkal, V. (2020). Experimental and numerical investigation of impact behavior of reinforced concrete slab with different support conditions. Structural Concrete, September,1–19. doi: 10.1002/suco.202000216.
  • Yılmaz, T., Kirac, N., Anil, Ö., Erdem, R. T., & Kacaran, G. (2020). Experimental Investigation of Impact Behaviour of RC Slab with Different Reinforcement Ratios. KSCE Journal of Civil Engineering, 24, 1, 241–254. doi: 10.1007/s12205-020-1168-x.
  • Alhawat, H., Hamid, R., Baharom, S., Azmi, M. R. & Kaish, A. B. M. A. (2021). Thermal behaviour of unloaded concrete tunnel lining through an innovative large-scale tunnel fire experimental testing setup. Construction and Building Materials, 283,122718. doi: 10.1016/j.conbuildmat.2021.122718.
  • Hua, N., Khorasani, N. E., Tessari, A. & Ranade, R. (2022). Experimental study of fire damage to reinforced concrete tunnel slabs. Fire Safety Journal, 127, 103504. doi: 10.1016/j.firesaf.2021.103504.
  • Jiang, L., Orabi, M. A., Jiang, J. & Usmani, A. (2021). Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 234, 111977. doi: 10.1016/j.engstruct.2021.111977.
  • Mirza, O. & Uy, B. (2009). Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures. Journal of Constructional Steel Research, 65, 662–74. doi: 10.1016/j.jcsr.2008.03.008.
  • Shen, Y., Zhu, H., Yan, Z., Zhou, L. & Lu, Y. (2021). Semi-analytical thermo-mechanical model for the shield tunnel segmental joint subjected to elevated temperatures. Tunnelling and Underground Space Technology, 118, 104170. doi: 10.1016/j.tust.2021.104170.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Tolga Yılmaz 0000-0001-7668-1496

Uğurhan Akyüz 0000-0003-1210-8142

Erken Görünüm Tarihi 19 Ağustos 2022
Yayımlanma Tarihi 18 Ağustos 2022
Kabul Tarihi 7 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 30 Sayı: 2

Kaynak Göster

APA Yılmaz, T., & Akyüz, U. (2022). NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(2), 289-299. https://doi.org/10.31796/ogummf.1100141
AMA Yılmaz T, Akyüz U. NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM. ESOGÜ Müh Mim Fak Derg. Ağustos 2022;30(2):289-299. doi:10.31796/ogummf.1100141
Chicago Yılmaz, Tolga, ve Uğurhan Akyüz. “NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, sy. 2 (Ağustos 2022): 289-99. https://doi.org/10.31796/ogummf.1100141.
EndNote Yılmaz T, Akyüz U (01 Ağustos 2022) NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 2 289–299.
IEEE T. Yılmaz ve U. Akyüz, “NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM”, ESOGÜ Müh Mim Fak Derg, c. 30, sy. 2, ss. 289–299, 2022, doi: 10.31796/ogummf.1100141.
ISNAD Yılmaz, Tolga - Akyüz, Uğurhan. “NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/2 (Ağustos 2022), 289-299. https://doi.org/10.31796/ogummf.1100141.
JAMA Yılmaz T, Akyüz U. NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM. ESOGÜ Müh Mim Fak Derg. 2022;30:289–299.
MLA Yılmaz, Tolga ve Uğurhan Akyüz. “NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 30, sy. 2, 2022, ss. 289-9, doi:10.31796/ogummf.1100141.
Vancouver Yılmaz T, Akyüz U. NUMERICAL INVESTIGATION OF RC TUNNEL SEGMENTS SUBJECTED TO ELEVATED TEMPERATURE VIA FEM. ESOGÜ Müh Mim Fak Derg. 2022;30(2):289-9.

20873 13565 13566 15461 13568  14913