Araştırma Makalesi
BibTex RIS Kaynak Göster

ZEMİN SIVILAŞMASINA KARŞI GELİŞTİRİLEN KISMİ DOYGUNLUĞA İNDİRGEME METOTLARI ÜZERİNE DENEYSEL ÇALIŞMA: GAZ KABARCIKLARININ DAĞILIMI

Yıl 2022, Cilt: 30 Sayı: 3, 309 - 317, 21.12.2022
https://doi.org/10.31796/ogummf.1062953

Öz

Doymuş kumlu zeminler, deprem yükleri altında sıvılaşarak serbest saha ve yapılar üzerinde zararlı etkilere neden olabilmektedir. Yapıların güvenliğini ve kullanılabilirliğini sağlamak için zemin sıvılaşmasına bağlı hasarların azaltılması veya önlenmesi gerekmektedir. Son yıllarda ortaya çıkmış olan Kısmi Doygunluğa İndirgeme (IPS) tekniği sıvılaşmanın etkilerini azaltmada kullanılabilecek yeni bir yöntemdir. Bu çalışmada, iki farklı IPS yöntemi kullanılarak kısmi doygun hale getirilmiş kum modelleri üzerinde laboratuvar testleri gerçekleştirilmiş ve özellikle zemin içerisindeki boşluklarda suni olarak oluşturulmuş olan hava/gaz kabarcıklarının dağılımı incelenmiştir. Bu amaç doğrultusunda, hava enjekte ederek veya kimyasal madde kullanarak şeffaf pleksiglas kutu içinde kısmi doygun gevşek kum modelleri hazırlanmıştır. Farklı test aşamalarında kaydedilmiş dijital resimler yardımı ile gaz/hava kabarcıklarının zemin içindeki dağılımı gözlemlenmiştir. Ayrıca, kum modellerinin farklı noktalarına yerleştirilen toprak nem ölçüm sensörleri ile doygunluk derecesinin zamana bağlı değişimi tespit edilmiştir. Test verilerinin kapsamlı analizleri, kullanılan kimyasal maddenin su içinde reaksiyona girmesi ile zemin içinde oksijen kabarcıkları oluşturduğunu ve bu kabarcıkların yeterince üniform olarak dağıldığını göstermiştir. Aynı zamanda bu yöntem ile istenilen doygunluk derecelerinde kum modelleri hazırlanabilmiştir. Buna karşılık, zemine enjekte edilen havanın sınırlı bir akış yolunu takip ettiği gözlemlenmiş ve hava enjeksiyon tekniğinin yerçekimi etkisi altında üniform ve düşük doygunluk derecesine (%90 altı) sahip kısmi doygun kum modellerinin hazırlanmasında nispeten daha az başarılı olduğu görülmüştür.

Kaynakça

  • Bertalot, D., Brennan, A. J. & Villalobos, F. A. (2013). Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Géotechnique, 63(5), 391-399. doi: https://doi.org/10.1680/geot.11.P.040
  • Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T. & Taylor, C. A. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618-1628. doi: https://doi.org/10.1016/j.soildyn.2011.06.006
  • Bray, J., Sancio, R., Durgunoglu, T., Onalp, A., Youd, T., Stewart, J., Seed, R., Cetin, O., Bol, E., Baturay, M., Christensen, C. & Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. doi: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
  • Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T. & Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246(June), 118415. doi: https://doi.org/10.1016/j.conbuildmat.2020.118415
  • Cubrinovski, M., Bray, J. D., Taylor, M., Giorgini, S., Bradley, B., Wotherspoon, L. & Zupan, J. (2011). Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seismological Research Letters, 82(6), 893-904. doi: https://doi.org/10.1785/gssrl.82.6.893
  • DeJong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. doi: https://doi.org/10.1016/j.ecoleng.2008.12.029
  • Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in Kobe, Japan. Journal of Geotechnical Engineering, 122(1):39-49. doi: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(39)
  • Eseller-Bayat, E. & Gulen, D. B. (2020). Undrained dynamic response of partially saturated sands tested in a DSS-C device. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020118. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
  • Eseller-Bayat, E., Yegian, M. K., Alshawabkeh, A. & Gokyer, S. (2013). Liquefaction response of partially saturated sands. I: Experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815
  • Gallagher, P. M. & Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering 22(9), 1017-1026. doi: https://doi.org/10.1016/S0267-7261(02)00126-4
  • Gallagher, P. M., Pamuk, A. & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. doi: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)
  • He, J., Chu, J. & Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. doi: https://doi.org/10.1680/geot.SIP13.P.004
  • Heron, C. M. (2013). The dynamic soil structure interaction of shallow foundations on dry sand beds (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.11754
  • Hu, X., Li, D., Peng, E., Hou, Z., Sheng, Y. & Chou, Y. (2020). Long-term sustainability of biogas bubbles in sand. Scientific Reports, 10(1), 12680. doi: https://doi.org/10.1038/s41598-020-69324-0
  • Marasini, N. P. & Okamura, M. (2015). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. doi: https://doi.org/10.1680/jphmg.14.00005
  • Mitchell, J. K., Baxter, C. D. P. & Munson, T. C. (1995). Performance of improved ground during earthquakes. Soil Improvement for Earthquake Hazard Mitigation, Geotechnical Special Publication, 49, 1-36. Retrieved from http://worldcat.org/isbn/0784401233
  • Montoya, B. M., DeJong, J. T. & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63(4), 302-312. doi: https://doi.org/10.1680/geot.SIP13.P.019
  • Mousavi, S. & Ghayoomi, M. (2021). Liquefaction Mitigation of Sands with Nonplastic Fines via Microbial-Induced Partial Saturation. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020156. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444
  • Nababan, F. R. P. (2015). Development and evaluation of induced partial saturation (IPS), delivery method and its implementation in large laboratory specimens and in the field (Doctoral Dissertation), Northeastern University, Boston. Retrieved from http://hdl.handle.net/2047/D20200382
  • O’Donnell, S. T., Rittmann, B. E. & Kavazanjian, E. (2017). MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017094. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818
  • Okamura, M. & Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 703–708. doi: https://doi.org/10.3208/sandf.46.695
  • Okamura, M., and Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. In Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, IIT Madras, Chennai, India (Indian Geotechnical Society, Chennai Chapter, Vol. 1, pp. 208-212).
  • Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H. & Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
  • Rajendran, K., Rajendran, C. P., Thakkar, M., & Tuttle, M. P. (2001). The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Current Science, 80(11), 1397–1405. Retrieved from http://www.jstor.org/stable/24104957
  • Seed, R. B., Cetin, K, O., Ress, M. O. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. & Faris, A. (2003). Recent advances in soil liquefaction engineering: A unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (pp. 301-371).
  • Yasuhara, H., Kochi, M. & Okamura, M. (2008). Experiments and predictions of soil desaturation by air injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. doi: https://doi.org/10.3208/sandf.48.791
  • Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. & Ali, S. (2007). Induced partial saturation (IPS) for liquefaction mitigation: Experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
  • Zamani, A., Xiao, P., Baumer, T. & Carey, T. J. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021099. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596
  • Zeybek, A. & Madabhushi, S. P. G. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. doi: https://doi.org/10.1007/s10518-016-9968-6
  • Zeybek, A. & Madabhushi, S. P. G. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. doi: https://doi.org/10.1016/j.soildyn.2017.03.018
  • Zeybek, A. & Madabhushi, S. P. G. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. doi: https://doi.org/10.1680/jgrim.16.00025
  • Zeybek, A. & Madabhushi, S. P. G. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. doi: https://doi.org/10.1680/jphmg.16.00049
  • Zeybek, A. & Madabhushi, S. P. G. (2019). Simplified procedure for prediction of earthquake-induced settlements in partially saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019100. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002173
  • Zeybek, A. (2017). Air injection technique to mitigate liquefaction beneath shallow foundations (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.14729
  • Zeybek, A. (2022a). Suggested method of specimen preparation for triaxial tests on partially saturated sand. Geotechnical Testing Journal, 45(2). doi: https://doi.org/10.1520/GTJ20210168
  • Zeybek, A. (2022b). Shaking table tests on seismic performance of shallow foundations resting on partially saturated sands. Arabian Journal of Geosciences, 15(8), 774. doi: https://doi.org/10.1007/s12517-022-10032-6

EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES

Yıl 2022, Cilt: 30 Sayı: 3, 309 - 317, 21.12.2022
https://doi.org/10.31796/ogummf.1062953

Öz

Saturated deposits of sandy soils may liquefy during an earthquake event, causing detrimental effects on the site and structures. Mitigation of liquefaction-induced damage is of the essence when the structures are expected to exceed the acceptable limits of safety and serviceability. Induced Partial Saturation (IPS) has been recently proposed as a novel liquefaction countermeasure. In the present study, several laboratory tests were conducted on partially saturated sand models to offer insights into two IPS methods, paying more attention to the distribution of air/gas bubbles entrapped in pore spaces. For this purpose, loose deposits of partially saturated sand were prepared in transparent plexiglass boxes either injecting air or using a chemical substance. Digital images were recorded at different stages of the tests, which provided an opportunity to visualize the distribution of gas/air bubbles. Furthermore, moisture sensors were placed at different locations of sand models, allowing to capture the variation of the degree of saturation with time. Comprehensive analyses of the test data suggested that oxygen bubbles were generated through a reaction between water and chemical substance, and the distribution of oxygen bubbles was sufficiently uniform across the sand models. This method also allowed the preparation of sand models at the desired degrees of saturation. On the contrary, at 1-g injected air was observed to flow through a path of less resistance, and this technique was comparatively less successful in preparing sand models with uniformly distributed air bubbles and at lower degrees of saturation (i.e., below 90%).

Kaynakça

  • Bertalot, D., Brennan, A. J. & Villalobos, F. A. (2013). Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Géotechnique, 63(5), 391-399. doi: https://doi.org/10.1680/geot.11.P.040
  • Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T. & Taylor, C. A. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618-1628. doi: https://doi.org/10.1016/j.soildyn.2011.06.006
  • Bray, J., Sancio, R., Durgunoglu, T., Onalp, A., Youd, T., Stewart, J., Seed, R., Cetin, O., Bol, E., Baturay, M., Christensen, C. & Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. doi: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
  • Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T. & Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246(June), 118415. doi: https://doi.org/10.1016/j.conbuildmat.2020.118415
  • Cubrinovski, M., Bray, J. D., Taylor, M., Giorgini, S., Bradley, B., Wotherspoon, L. & Zupan, J. (2011). Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seismological Research Letters, 82(6), 893-904. doi: https://doi.org/10.1785/gssrl.82.6.893
  • DeJong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. doi: https://doi.org/10.1016/j.ecoleng.2008.12.029
  • Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in Kobe, Japan. Journal of Geotechnical Engineering, 122(1):39-49. doi: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(39)
  • Eseller-Bayat, E. & Gulen, D. B. (2020). Undrained dynamic response of partially saturated sands tested in a DSS-C device. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020118. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
  • Eseller-Bayat, E., Yegian, M. K., Alshawabkeh, A. & Gokyer, S. (2013). Liquefaction response of partially saturated sands. I: Experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815
  • Gallagher, P. M. & Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering 22(9), 1017-1026. doi: https://doi.org/10.1016/S0267-7261(02)00126-4
  • Gallagher, P. M., Pamuk, A. & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. doi: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)
  • He, J., Chu, J. & Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. doi: https://doi.org/10.1680/geot.SIP13.P.004
  • Heron, C. M. (2013). The dynamic soil structure interaction of shallow foundations on dry sand beds (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.11754
  • Hu, X., Li, D., Peng, E., Hou, Z., Sheng, Y. & Chou, Y. (2020). Long-term sustainability of biogas bubbles in sand. Scientific Reports, 10(1), 12680. doi: https://doi.org/10.1038/s41598-020-69324-0
  • Marasini, N. P. & Okamura, M. (2015). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. doi: https://doi.org/10.1680/jphmg.14.00005
  • Mitchell, J. K., Baxter, C. D. P. & Munson, T. C. (1995). Performance of improved ground during earthquakes. Soil Improvement for Earthquake Hazard Mitigation, Geotechnical Special Publication, 49, 1-36. Retrieved from http://worldcat.org/isbn/0784401233
  • Montoya, B. M., DeJong, J. T. & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63(4), 302-312. doi: https://doi.org/10.1680/geot.SIP13.P.019
  • Mousavi, S. & Ghayoomi, M. (2021). Liquefaction Mitigation of Sands with Nonplastic Fines via Microbial-Induced Partial Saturation. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020156. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444
  • Nababan, F. R. P. (2015). Development and evaluation of induced partial saturation (IPS), delivery method and its implementation in large laboratory specimens and in the field (Doctoral Dissertation), Northeastern University, Boston. Retrieved from http://hdl.handle.net/2047/D20200382
  • O’Donnell, S. T., Rittmann, B. E. & Kavazanjian, E. (2017). MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017094. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818
  • Okamura, M. & Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 703–708. doi: https://doi.org/10.3208/sandf.46.695
  • Okamura, M., and Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. In Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, IIT Madras, Chennai, India (Indian Geotechnical Society, Chennai Chapter, Vol. 1, pp. 208-212).
  • Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H. & Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
  • Rajendran, K., Rajendran, C. P., Thakkar, M., & Tuttle, M. P. (2001). The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Current Science, 80(11), 1397–1405. Retrieved from http://www.jstor.org/stable/24104957
  • Seed, R. B., Cetin, K, O., Ress, M. O. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. & Faris, A. (2003). Recent advances in soil liquefaction engineering: A unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (pp. 301-371).
  • Yasuhara, H., Kochi, M. & Okamura, M. (2008). Experiments and predictions of soil desaturation by air injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. doi: https://doi.org/10.3208/sandf.48.791
  • Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. & Ali, S. (2007). Induced partial saturation (IPS) for liquefaction mitigation: Experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
  • Zamani, A., Xiao, P., Baumer, T. & Carey, T. J. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021099. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596
  • Zeybek, A. & Madabhushi, S. P. G. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. doi: https://doi.org/10.1007/s10518-016-9968-6
  • Zeybek, A. & Madabhushi, S. P. G. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. doi: https://doi.org/10.1016/j.soildyn.2017.03.018
  • Zeybek, A. & Madabhushi, S. P. G. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. doi: https://doi.org/10.1680/jgrim.16.00025
  • Zeybek, A. & Madabhushi, S. P. G. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. doi: https://doi.org/10.1680/jphmg.16.00049
  • Zeybek, A. & Madabhushi, S. P. G. (2019). Simplified procedure for prediction of earthquake-induced settlements in partially saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019100. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002173
  • Zeybek, A. (2017). Air injection technique to mitigate liquefaction beneath shallow foundations (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.14729
  • Zeybek, A. (2022a). Suggested method of specimen preparation for triaxial tests on partially saturated sand. Geotechnical Testing Journal, 45(2). doi: https://doi.org/10.1520/GTJ20210168
  • Zeybek, A. (2022b). Shaking table tests on seismic performance of shallow foundations resting on partially saturated sands. Arabian Journal of Geosciences, 15(8), 774. doi: https://doi.org/10.1007/s12517-022-10032-6
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Abdulhakim Zeybek 0000-0001-7096-5770

Erken Görünüm Tarihi 21 Aralık 2022
Yayımlanma Tarihi 21 Aralık 2022
Kabul Tarihi 10 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 30 Sayı: 3

Kaynak Göster

APA Zeybek, A. (2022). EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(3), 309-317. https://doi.org/10.31796/ogummf.1062953
AMA Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. Aralık 2022;30(3):309-317. doi:10.31796/ogummf.1062953
Chicago Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, sy. 3 (Aralık 2022): 309-17. https://doi.org/10.31796/ogummf.1062953.
EndNote Zeybek A (01 Aralık 2022) EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 3 309–317.
IEEE A. Zeybek, “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”, ESOGÜ Müh Mim Fak Derg, c. 30, sy. 3, ss. 309–317, 2022, doi: 10.31796/ogummf.1062953.
ISNAD Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/3 (Aralık 2022), 309-317. https://doi.org/10.31796/ogummf.1062953.
JAMA Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. 2022;30:309–317.
MLA Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 30, sy. 3, 2022, ss. 309-17, doi:10.31796/ogummf.1062953.
Vancouver Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. 2022;30(3):309-17.

20873 13565 13566 15461 13568  14913