Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Yıl 2022, Cilt: 30 Sayı: 3, 389 - 396, 21.12.2022
https://doi.org/10.31796/ogummf.1066433

Öz

ecently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.

Destekleyen Kurum

Eskisehir Osmangazi University, Scientific Research Foundation

Proje Numarası

201815044

Teşekkür

The authors gratefully acknowledge Eskisehir Osmangazi University for financial support (Scientific Research Foundation, grant number 2018-2065 and grant number 2017-1911) and Turkish Scientific and Technological Council (TÜBİTAK 1004-Regenerative and Restorative Medicine Research and Applications) under the grant numbers of 20AG003 and 20AG031. Authors also would like to thank Dr. Ugur Morali for his great help and fruitful discussions.

Kaynakça

  • Avci, H., Anıl H., Koc, Y., Morali, U., and Erol, S. (2019). Developing Biosensors for Food Safety Analysis. Presented at The 4th International Congress on Biosensors, Çanakkale, Turkey.
  • Charoenkitamorn, K., Chailapakul, O., and Siangproh, W. (2015). Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 132: 416-423. https://doi.org/10.1016/j.talanta.2014.09.020
  • Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., and Lagarde, F. (2017). Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors (pp. 167-204). Academic Press. https://doi.org/10.1016/B978-0-12-804301-1.00005-9
  • Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S., and Di Carlo, A., (2015). Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage.,92,1-9. https://doi.org/10.1016/j.enconman.2014.12.040
  • Güzel, F. D., Ghorbanpoor, H., Dizaji, A. N., Akcakoca, I., Ozturk, Y., Kocagoz, T., Corrigan, D., and Avci, H. (2021). Label‐free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format. Biotechnology and Applied Biochemistry, 68(6), 1159-1166. https://doi.org/10.1002/bab.2037
  • I.M. Apetrei, C. and Apetrei, (2018). A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 114, 37–43. https://doi.org/10.1016/j.measurement.2017.09.020
  • Jorcin, J.-B., Orazem, M. E., Pébère, N., and Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128
  • Koc, Y., Morali, U., Erol, S., and Avci, H. (2019). Investigation of Immobilization Process of Screen Printed Carbon Electrode for an Advanced Biosensor A Detailed Characterization. Presented at the IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey.
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021a). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6). http://doi.org/10.3906/kim-2105-55
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021b) Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. Electroanalysis, 33(4), 1033-1048. https://doi.org/10.1002/elan.202060433
  • M. Singh, N. Jaiswal, I. Tiwari, C.W. Foster, and C.E. Banks, (2018). A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 829, 230–240. https://doi.org/10.1016/j.jelechem.2018.09.018
  • Merli, D., Ferrari, C., Cabrini, E., Dacarro, G., Pallavicini, P., and Profumo, A. (2016). A gold nanoparticle chemically modified gold electrode for the determination of surfactants. RSC advances, 6(108), 106500-106507. https://doi.org/10.1039/C6RA22223D
  • Morali, U. (2020). Synergistic influence of charge conditions on electrochemical impedance response of LiNiMnCoO2|C coin cells - Complementary statistical analysis. Journal of Energy Storage, 32, 101809. https://doi.org/10.1016/j.est.2020.101809
  • Orazem, M. E., and Tribollet, B. (2008). Electrochemical impedance spectroscopy. New Jersey, 383-389.
  • Samie, H. A., and Arvand, M., (2020). Label-free electrochemical aptasensor for progesterone detection in biological fluids, Bioelectrochemistry, 133, 107489. https://doi.org/10.1016/j.bioelechem.2020.107489
  • Sanzo, G., Taurino, I., Antiochia, R., Gorton, L., Favero, G., Mazzei, F., Micheli, and Carrara, S. (2016). Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry, 112, 125-131. https://doi.org/10.1016/j.bioelechem.2016.02.012
  • Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4),797. https://doi.org/10.3390/app9040797
  • Taurino, I., Sanzò, G., Antiochia, R., Tortolini, C., Mazzei, F., Favero, G., Michelii and Carrara, S. (2016). Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trends in Analytical Chemistry, 79, 151-159. https://doi.org/10.1016/j.trac.2016.01.020
  • Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., and Orazem M. (2021). Electrochemical impedance spectroscopy. Nat Rev Methods Primers 1, 41. https://doi.org/10.1038/s43586-021-00039-w
  • Wolff, N., Harting, N., Heinrich, M., Röder, F., and Krewer, U. (2018). Nonlinear frequency response analysis on lithium-ion batteries: a model-based assessment. Electrochimica Acta, 260, 614-622. https://doi.org/10.1016/j.electacta.2017.12.097
  • Zhang, Y., Jiang, X., Zhang, J., Zhang, H., & Li, Y. (2019). Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 130, 315-321. https://doi.org/10.1016/j.bios.2019.01.043

INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Yıl 2022, Cilt: 30 Sayı: 3, 389 - 396, 21.12.2022
https://doi.org/10.31796/ogummf.1066433

Öz

Recently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.

Proje Numarası

201815044

Kaynakça

  • Avci, H., Anıl H., Koc, Y., Morali, U., and Erol, S. (2019). Developing Biosensors for Food Safety Analysis. Presented at The 4th International Congress on Biosensors, Çanakkale, Turkey.
  • Charoenkitamorn, K., Chailapakul, O., and Siangproh, W. (2015). Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 132: 416-423. https://doi.org/10.1016/j.talanta.2014.09.020
  • Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., and Lagarde, F. (2017). Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors (pp. 167-204). Academic Press. https://doi.org/10.1016/B978-0-12-804301-1.00005-9
  • Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S., and Di Carlo, A., (2015). Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage.,92,1-9. https://doi.org/10.1016/j.enconman.2014.12.040
  • Güzel, F. D., Ghorbanpoor, H., Dizaji, A. N., Akcakoca, I., Ozturk, Y., Kocagoz, T., Corrigan, D., and Avci, H. (2021). Label‐free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format. Biotechnology and Applied Biochemistry, 68(6), 1159-1166. https://doi.org/10.1002/bab.2037
  • I.M. Apetrei, C. and Apetrei, (2018). A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 114, 37–43. https://doi.org/10.1016/j.measurement.2017.09.020
  • Jorcin, J.-B., Orazem, M. E., Pébère, N., and Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128
  • Koc, Y., Morali, U., Erol, S., and Avci, H. (2019). Investigation of Immobilization Process of Screen Printed Carbon Electrode for an Advanced Biosensor A Detailed Characterization. Presented at the IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey.
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021a). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6). http://doi.org/10.3906/kim-2105-55
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021b) Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. Electroanalysis, 33(4), 1033-1048. https://doi.org/10.1002/elan.202060433
  • M. Singh, N. Jaiswal, I. Tiwari, C.W. Foster, and C.E. Banks, (2018). A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 829, 230–240. https://doi.org/10.1016/j.jelechem.2018.09.018
  • Merli, D., Ferrari, C., Cabrini, E., Dacarro, G., Pallavicini, P., and Profumo, A. (2016). A gold nanoparticle chemically modified gold electrode for the determination of surfactants. RSC advances, 6(108), 106500-106507. https://doi.org/10.1039/C6RA22223D
  • Morali, U. (2020). Synergistic influence of charge conditions on electrochemical impedance response of LiNiMnCoO2|C coin cells - Complementary statistical analysis. Journal of Energy Storage, 32, 101809. https://doi.org/10.1016/j.est.2020.101809
  • Orazem, M. E., and Tribollet, B. (2008). Electrochemical impedance spectroscopy. New Jersey, 383-389.
  • Samie, H. A., and Arvand, M., (2020). Label-free electrochemical aptasensor for progesterone detection in biological fluids, Bioelectrochemistry, 133, 107489. https://doi.org/10.1016/j.bioelechem.2020.107489
  • Sanzo, G., Taurino, I., Antiochia, R., Gorton, L., Favero, G., Mazzei, F., Micheli, and Carrara, S. (2016). Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry, 112, 125-131. https://doi.org/10.1016/j.bioelechem.2016.02.012
  • Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4),797. https://doi.org/10.3390/app9040797
  • Taurino, I., Sanzò, G., Antiochia, R., Tortolini, C., Mazzei, F., Favero, G., Michelii and Carrara, S. (2016). Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trends in Analytical Chemistry, 79, 151-159. https://doi.org/10.1016/j.trac.2016.01.020
  • Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., and Orazem M. (2021). Electrochemical impedance spectroscopy. Nat Rev Methods Primers 1, 41. https://doi.org/10.1038/s43586-021-00039-w
  • Wolff, N., Harting, N., Heinrich, M., Röder, F., and Krewer, U. (2018). Nonlinear frequency response analysis on lithium-ion batteries: a model-based assessment. Electrochimica Acta, 260, 614-622. https://doi.org/10.1016/j.electacta.2017.12.097
  • Zhang, Y., Jiang, X., Zhang, J., Zhang, H., & Li, Y. (2019). Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 130, 315-321. https://doi.org/10.1016/j.bios.2019.01.043
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Yucel Koc 0000-0002-8301-5595

Huseyin Avci 0000-0002-2475-1963

Proje Numarası 201815044
Erken Görünüm Tarihi 21 Aralık 2022
Yayımlanma Tarihi 21 Aralık 2022
Kabul Tarihi 16 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 30 Sayı: 3

Kaynak Göster

APA Koc, Y., & Avci, H. (2022). INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(3), 389-396. https://doi.org/10.31796/ogummf.1066433
AMA Koc Y, Avci H. INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. ESOGÜ Müh Mim Fak Derg. Aralık 2022;30(3):389-396. doi:10.31796/ogummf.1066433
Chicago Koc, Yucel, ve Huseyin Avci. “INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, sy. 3 (Aralık 2022): 389-96. https://doi.org/10.31796/ogummf.1066433.
EndNote Koc Y, Avci H (01 Aralık 2022) INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 3 389–396.
IEEE Y. Koc ve H. Avci, “INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY”, ESOGÜ Müh Mim Fak Derg, c. 30, sy. 3, ss. 389–396, 2022, doi: 10.31796/ogummf.1066433.
ISNAD Koc, Yucel - Avci, Huseyin. “INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/3 (Aralık 2022), 389-396. https://doi.org/10.31796/ogummf.1066433.
JAMA Koc Y, Avci H. INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. ESOGÜ Müh Mim Fak Derg. 2022;30:389–396.
MLA Koc, Yucel ve Huseyin Avci. “INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 30, sy. 3, 2022, ss. 389-96, doi:10.31796/ogummf.1066433.
Vancouver Koc Y, Avci H. INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. ESOGÜ Müh Mim Fak Derg. 2022;30(3):389-96.

20873 13565 13566 15461 13568  14913