Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araçlarda Kullanılan Paralel ve Seri Kanallı Soğutma Plakalarının Performanslarının HAD Yöntemi ile Karşılaştırılması

Yıl 2022, Cilt: 30 Sayı: 3, 397 - 404, 21.12.2022
https://doi.org/10.31796/ogummf.1133134

Öz

Soğutucu levhalarda düşük ısıl direnç, dolayısıyla yüksek ısı transferi ve düşük basınç kaybı arzu edilmektedir. Bu çalışmada, elektrikli araç uygulamalarında li-iyon pil hücrelerinin termal regülasyonu için, farklı konfigürasyonlara sahip sıvı soğutmalı üç soğutucu levhanın performansları incelenmiştir. Seri, paralel ve seri-paralel konfigürasyonlarda oluşturulan soğutucu levhaların aynı batarya modülünde kullanılabilmeleri için dış boyutları birbiriyle aynı tutulmuştur. Çalışmada, soğuk plakaların performansları, Hesaplamalı Akışkanlar Dinamiği (HAD) araçları kullanılarak incelenmiştir. Çeşitli akış hızlarında, soğuk plakaların içindeki akış alanını ve termal alanı hesaplamak için ANSYS Fluent ticari yazılımı kullanılmıştır. Soğuk plakaların performansları, sürekli rejimde Navier-Stokes, enerji ve süreklilik denklemleri 3 boyutlu simülasyonlar ile çözülerek elde edilmiştir. Reynolds sayısı laminer akış limitleri içerisinde hesaplandığından, tüm akış durumları için laminer akış kabul edilerek çözümlere gidilmiştir. Simülasyonlar sonucunda, paralel akış geometrisindeki soğutucu sıvının basınç kaybının seri olana göre önemli ölçüde daha düşük olduğu görülmüştür. Bununla birlikte, beklenildiği gibi, paralel akış geometrisinde seriye göre yüksek ısıl direnç ve düşük sıcaklık homojenliği gözlemlenmiştir. Sonuç olarak, basınç düşüşü ve ısı transferi arasındaki dengenin, akış düzeninin mümkün olduğunca paralel tutulup çapraz kanalların ise uzunluğunun arttırıldığı bir serpantin şekli uygulanarak optimize edilebileceğini seri-paralel konfigürasyon sonuçları göstermektedir.

Kaynakça

  • ANSYS FLUENT User’s Guide 14.0. (2011). Modelling Flows Using Sliding and Dynamic Meshes, ANSYS, Inc., November 2011, 11, pp. 610-612
  • Chen, D., et al. (2016). Comparison of Different Cooling Methods for Lithium Ion Battery Cells, Applied Thermal Engineering, 94 (2016), 1, pp. 846-854
  • Datta, A.B., Majumdar, A.K. (1980). Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow, 2 (1980), 4, pp. 253-262
  • Dincer, I., et al. (2017). Thermal Management of Electric Vehicle Battery Systems, John Wiley and Sons Ltd., United Kingdom.
  • Haifeng, D., et al. (2015). Design and Simulation of Liquid-cooling Plates for Thermal Management of EV Batteries, EVS28, Kintex, Korea, 2015, Vol. 1, pp. 1-7
  • Jarrett, A. (2011). Multi-Objective Design Optimization of Electric Vehicle Battery Cooling Plates Considering Thermal and Pressure Objective Functions, M. Sc. thesis, Queen's University, Ontario, Canada.
  • Jung, H.G., et al. (2011). A High-rate Long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 Lithium-ion Battery, Nature Communications, 2, pp. 516–520
  • Kandlikar, S.G., Hayner II, C.N. (2009). Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices—Thermal Design and Manufacturing Considerations, Heat Transfer Engineering, 30 (2009), 12, pp. 918-930
  • Khan, M.R., et al. (2017). Towards an Ultimate Battery Thermal Management System: A Review, Batteries, 3, (2017), 1, pp. 1-18
  • Panchal, S., et al. (2015). Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach, SAE Int. J. Alt. Power, 4 (2015), 2, pp. 293-307
  • Rahman, M.M., et al. (2016). Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV), ICARET 2016, Selangor, Malaysia, 2016, Vol. 1, pp. 1-4
  • Schöner, H.P., Ogborn, L.L.. (1987). Fast Battery to Battery Charge, Journal of Power Sources, 21 (1987), pp. 91-103
  • Solovitz, S.A., Mainka, J. (2011). Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution, ASME Journal of Fluids Engineering, 133 (2011), 5, pp. 1-11
  • Teng, H., Yeow, K. (2012). Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs, SAE Int. J. Alt. Power, 1 (2012), 2, pp.525-536
  • Teng, H., et al. (2011). Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates, SAE Int. J. Passeng. Cars – Mech. Syst, 4 (2011), 3, pp. 1331-1342
  • Warner, J. (2015). The Handbook of Lithium-Ion Battery Pack Design, Chemistry, Components, Types and Terminology, Elsevier, USA, 2015
  • Yeow, K., et al. (2012). Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach, SAE Int. J. Alt. Power, 1 (2012), 1, pp. 65-78
  • Yeow, K., Teng, H. (2013). Reducing Temperature Gradients in High-Power, Large-Capacity Lithium-Ion Cells through Ultra-High Thermal Conductivity Heat Spreaders Embedded in Cooling Plates for Battery Systems with Indirect Liquid Cooling, SAE World Congress & Exhibition, Detroit, USA, 2013, Vol. 1, pp. 1-11.

PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS

Yıl 2022, Cilt: 30 Sayı: 3, 397 - 404, 21.12.2022
https://doi.org/10.31796/ogummf.1133134

Öz

In a cold plate low thermal resistance thus high heat transfer rate and also low pressure drop is desired. In this study, performances of three liquid cold plates with different configurations are investigated for the thermal regulation of li-ion battery cells in electric vehicle applications. The outer dimensions of the cold plates are kept identical in order to use the cold plates in the same battery module under series, parallel and series-parallel configurations. The performances of the cold plates are investigated by using Computational Fluid Dynamic (CFD) tools. ANSYS Fluent commercial software is used to calculate the flowfield and the thermal field inside the cold plates for various flowrates. The performances of the cold plates are obtained by 3D simulations that solve Navier-Stokes, energy and continuity equations in a steady manner. The flow is assumed to be laminar for all the cases since calculated Reynolds number stay in laminar flow limits. The results show that the pressure drop of the coolant liquid of parallel flow arrangement is significantly lower than the serial arrangement. However, high thermal resistance and low uniformity of the temperature through the cold plate is observed compared to the serial case, as expected. As a result, series-parallel configuration results show that the trade-off between pressure drop and heat transfer rate can be optimized by applying a serpentine shape while keeping the flow arrangement as parallel as possible and increasing the length of the cross channels.

Kaynakça

  • ANSYS FLUENT User’s Guide 14.0. (2011). Modelling Flows Using Sliding and Dynamic Meshes, ANSYS, Inc., November 2011, 11, pp. 610-612
  • Chen, D., et al. (2016). Comparison of Different Cooling Methods for Lithium Ion Battery Cells, Applied Thermal Engineering, 94 (2016), 1, pp. 846-854
  • Datta, A.B., Majumdar, A.K. (1980). Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow, 2 (1980), 4, pp. 253-262
  • Dincer, I., et al. (2017). Thermal Management of Electric Vehicle Battery Systems, John Wiley and Sons Ltd., United Kingdom.
  • Haifeng, D., et al. (2015). Design and Simulation of Liquid-cooling Plates for Thermal Management of EV Batteries, EVS28, Kintex, Korea, 2015, Vol. 1, pp. 1-7
  • Jarrett, A. (2011). Multi-Objective Design Optimization of Electric Vehicle Battery Cooling Plates Considering Thermal and Pressure Objective Functions, M. Sc. thesis, Queen's University, Ontario, Canada.
  • Jung, H.G., et al. (2011). A High-rate Long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 Lithium-ion Battery, Nature Communications, 2, pp. 516–520
  • Kandlikar, S.G., Hayner II, C.N. (2009). Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices—Thermal Design and Manufacturing Considerations, Heat Transfer Engineering, 30 (2009), 12, pp. 918-930
  • Khan, M.R., et al. (2017). Towards an Ultimate Battery Thermal Management System: A Review, Batteries, 3, (2017), 1, pp. 1-18
  • Panchal, S., et al. (2015). Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach, SAE Int. J. Alt. Power, 4 (2015), 2, pp. 293-307
  • Rahman, M.M., et al. (2016). Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV), ICARET 2016, Selangor, Malaysia, 2016, Vol. 1, pp. 1-4
  • Schöner, H.P., Ogborn, L.L.. (1987). Fast Battery to Battery Charge, Journal of Power Sources, 21 (1987), pp. 91-103
  • Solovitz, S.A., Mainka, J. (2011). Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution, ASME Journal of Fluids Engineering, 133 (2011), 5, pp. 1-11
  • Teng, H., Yeow, K. (2012). Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs, SAE Int. J. Alt. Power, 1 (2012), 2, pp.525-536
  • Teng, H., et al. (2011). Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates, SAE Int. J. Passeng. Cars – Mech. Syst, 4 (2011), 3, pp. 1331-1342
  • Warner, J. (2015). The Handbook of Lithium-Ion Battery Pack Design, Chemistry, Components, Types and Terminology, Elsevier, USA, 2015
  • Yeow, K., et al. (2012). Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach, SAE Int. J. Alt. Power, 1 (2012), 1, pp. 65-78
  • Yeow, K., Teng, H. (2013). Reducing Temperature Gradients in High-Power, Large-Capacity Lithium-Ion Cells through Ultra-High Thermal Conductivity Heat Spreaders Embedded in Cooling Plates for Battery Systems with Indirect Liquid Cooling, SAE World Congress & Exhibition, Detroit, USA, 2013, Vol. 1, pp. 1-11.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ayhan Nazmi İlikan 0000-0001-9497-2406

Ahmet Yaylı 0000-0003-4404-5609

Erken Görünüm Tarihi 21 Aralık 2022
Yayımlanma Tarihi 21 Aralık 2022
Kabul Tarihi 16 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 30 Sayı: 3

Kaynak Göster

APA İlikan, A. N., & Yaylı, A. (2022). PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(3), 397-404. https://doi.org/10.31796/ogummf.1133134
AMA İlikan AN, Yaylı A. PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS. ESOGÜ Müh Mim Fak Derg. Aralık 2022;30(3):397-404. doi:10.31796/ogummf.1133134
Chicago İlikan, Ayhan Nazmi, ve Ahmet Yaylı. “PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, sy. 3 (Aralık 2022): 397-404. https://doi.org/10.31796/ogummf.1133134.
EndNote İlikan AN, Yaylı A (01 Aralık 2022) PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 3 397–404.
IEEE A. N. İlikan ve A. Yaylı, “PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS”, ESOGÜ Müh Mim Fak Derg, c. 30, sy. 3, ss. 397–404, 2022, doi: 10.31796/ogummf.1133134.
ISNAD İlikan, Ayhan Nazmi - Yaylı, Ahmet. “PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/3 (Aralık 2022), 397-404. https://doi.org/10.31796/ogummf.1133134.
JAMA İlikan AN, Yaylı A. PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS. ESOGÜ Müh Mim Fak Derg. 2022;30:397–404.
MLA İlikan, Ayhan Nazmi ve Ahmet Yaylı. “PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 30, sy. 3, 2022, ss. 397-04, doi:10.31796/ogummf.1133134.
Vancouver İlikan AN, Yaylı A. PERFORMANCE COMPARISON OF PARALLEL AND SERIES CHANNEL COLD PLATES USED IN ELECTRIC VEHICLES BY MEANS OF CFD SIMULATIONS. ESOGÜ Müh Mim Fak Derg. 2022;30(3):397-404.

20873 13565 13566 15461 13568  14913