Araştırma Makalesi
BibTex RIS Kaynak Göster

YENİ BİR NİTİ ŞEKİL HAFIZALI ALAŞIM TABANLI HALKA ANTEN İLE 2.45 GHz' DE EX VIVO MİKRODALGA ABLASYON UYGULAMASI

Yıl 2023, Cilt: 31 Sayı: 1, 533 - 543, 29.04.2023
https://doi.org/10.31796/ogummf.1111038

Öz

Kanser tedavisinde en çok tercih edilen tedavi yöntemleri hala cerrahi ameliyat ve kemoterapi olsa da, bu tedavi yöntemlerindeki riskleri kaldıramayacak hastalarda, minimal invaziv termal ablasyon tekniklerinden biri olan mikrodalga ablasyon uygulaması gittikçe artan bir oranda klinikte kullanılmaktadır. Bu çalışmada, Ex Vivo uygulaması olarak yeni kesilmiş bir sığır karaciğerine yeni bir NiTi halka anten ile mikrodalga ablasyon uygulaması gerçekleştirilmiştir. Tasarım ve optimizasyon CST Mikrodalga stüdyoda gerçekleştirilmiştir. Ex Vivo MWA uygulaması, 2.45 GHz’ de, 50 W mikrodalga gücünün 5 dakika süresince kullanılmasıyla gerçekleştirilmiştir. x ekseni boyunca oluşturulan ablasyon bölgesinin en düşük genişliği 14,58 mm, en yüksek genişliği 28,61 mm, y ekseni boyunca elde edilen ablasyon alanının uzunluğu 58.032 mm ve ablasyon bölgesi alanı ise yaklaşık 5.44 cm2 olarak elde edilmiştir. Elde edilen bu sonuçlar önerilen NiTi halka antenin ablasyon bölgesi boyutları açısından yeterli bir termal lezyonu başarma kabiliyetine sahip olduğunu göstermektedir.

Kaynakça

  • Ahmed, M., Brace, C.L., Lee, F.T.J., and Goldberg, S.N. (2011). Principles of and advances in percutaneous ablation, Radiology, 258(2), 351–369.
  • Ako, I.P. et al. (2019). A Study of the Radiation Characteristics of a Circular Loop Antenna Using Genetic Algorithm Technique, International Journal of Applied Engineering Research, 14(7), 1499-1504.
  • Amabile, C., Ahmed, M., Solbiati, L., Meloni, M.F., Solbiati, M., Cassarino, S., Tosoratti, N., Nissenbaum, Y., Ierace, T., Goldberg, S.N. (2017). Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterization, International journal of hyperthermia, Vol. 33, No. 1, 34–42.
  • Andreano, A., Huang, Y., Meloni, M.F., Lee, F.T., Brace, C. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue, Medical Physics, 37(6), 2967– 2973.
  • Balanis, C.A. (1982). Antenna Theory: Analysis and Design, 2nd ed., Chapter 5, John Wiley & Sons Inc., New York.
  • Bolton, T. (2016). Optimal Design of Electrically Small Loop Antenna Including Surrounding Medium Effects, MSc Thesis, Georgia Institute of Technology. Brace, C.L. (2011). Dual-slot antennas for microwave tissue heating: Parametric design analysis and experimental validation, Medical Physics, 38(7), 4231–4240.
  • Brace, C.L. (2020). Microwave tissue ablation: biophysics,technology, and applications, Critical Reviews™ in Biomedical Engineering, 38, 65–78.
  • Brace, C.L., Laeseke, P.F., Van der Weide, P.D., and Lee, F.T. (2005). Microwave ablation with a triaxial antenna: Results in ex vivo bovine liver, IEEE Transactions Microwave Theory Technology, 53(1), 215–220.
  • Dielectric Properties of Body Tissues. (2021) Erişim adresi: http://niremf.ifac.cnr.it/tissprop/
  • Etoz, S. and Brace, C.L. (2018). Analysis of microwave ablation antenna optimization techniques, International journal of RF Microwave Computer Aided Eng., 28:e21224.
  • Fadlallah, A.S., El-Bagoury, N., Gad, E.R.M.S., Ahmed, A.R., El-Ousamii, G. (2014). An Overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application, Journal of Alloys Compounds, 583, 455–464.
  • Fujimoto, K. and James, J.R. (2001). Mobile Antenna Systems Handbook, 2nd ed., Artech House.
  • Ge, M., Jiang, H., Huang, X., Zhou, Y., Zhi, D., Zhao, G., Chen, Y., Wang, L., and Qiu, B. (2018). A multi-slot coaxial microwave antenna for liver tumor ablation, Physics in Medicine and Biology, 63, 1-13.
  • Goldberg, S.N., Gazelle, G.S., Dawson, S.L., Rittman, W., Mueller, P.R., Rosenthal, D.L. (1995). Tissue ablation with radiofrequenc : effect of probe size. gauge. duration. and temperature on lesion volume, Acad Radio, 2, 399-404.
  • Goldberg, S.N., Gazelle, G.S., Solbiati, L., Livraghi, T., Tanabe, K.K., Hahn, P.F., and Mueller, P.R. (1998). ‘Ablation of liver tumors using percutaneous RF therapy, Ajr american journal of roentgenology, vol. 170, no. 4, 1023–1028.
  • Görgün, A.R., Çömlekci, S., Kaya, A. (2019). Single Slot Coaxial Antenna and NiTi (Nickel Titanium) Loop Antenna Design for ISM (Industrial Scientific Medical) Band Microwave Ablation System, Medical Technologies Congress (TIPTEKNO), IEEE 2019.
  • Hamed, S.M.A. et al. (2014). Exact fields expressions for a circular loop antenna above a perfect electric conducting ground plane, Sudan Engineering Society Journal, 60(1).
  • Hancock, C.P. (2011). Electrosurgical apparatus for RF and microwave delivery, U.S. Patent, 13/992,666.
  • Hassan, E.G.M.I., Takruri, H., and Hope, M. (2016). Applicator design considerations of microwave tumor ablation, In Proc. 10th International Symposium on Communication Systems , Networks and Digital Signal Processing, 1–6.
  • Hodgson, D.A., Feldberg, I.B., Sharp, N., Cronin, N., Evans, M., and Hirschowitz, L. (1999). Microwave endometrial ablation: Development, clinical trials and outcomes at three years, British Journal of Obstetrics and Gynaecology, 106(7), 684–694.
  • Holton, A., Walsh, E., Anayiotos, A., Pohost, G., Venugopalan, R. (2002). Comparative MRI compatibility of 316 L stainless steel alloy and nickel titanium alloy stents, Original article technical, Journal of Cardiovascular Magnetic Resonance, 4(4), 423-430.
  • Hubner, F., Schreiner, R., Reimann, C., Bazrafshan, B., Kaltenbach, B., Schußler, M., Jakoby, R., and Vogl, T.J. (2019). Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver, Medical Engineering and Physics, 66, 56-64.
  • Hurter, W., Reinbold, F., and Lorenz, W. (1991). A dipole antenna for interstitial microwave hyperthermia, IEEE Transactions Microwave Theory Technology, 39, 1048–1054.
  • Ibitoye, Z.A., Nwoye, E.O., Aweda, M.A., Oremosu, A.A., Annunobi, C.C., Akanmu, O.N. (2015). Optimization of dual slot antenna using floating metallic sleeve for microwave ablation, Medical Engineering and Physics 37, 384-391.
  • Kaur, S. and Maini, S. (2014). Microwave ablation therapy for the treatment of hepatocellular carcinoma using double slot interstitial antenna, Internatıonal Journal Of Research In Computer Applıcatıons And Robotıcs, 2(1), 56-61.
  • Lencioni, R., Goletti, O, Armillotta, N., Paolicchi, A., Moretti, M., Cioni, D., Donati, F., Cicorelli, A., Ricci, S., Carrai, M., Conte, P.F., Cavina, E., and Bartolozzi, C. (1998). Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: Results of a pilot clinical trial, European Radiology, vol. 8, no. 7, 1205–1211.
  • Liang ,P., Wang, Y. (2007). Microwave ablation of hepatocellular carcinoma, Oncology, 72 (1), 124–131. Liu, E., Zong, Y., Chen, J., Zhang, X.J., Ren, R., Guo, X.C., Liu, Z.J., Lin, C.X. (2020). Cryoablation combined with radiotherapy for hepatic malignancy: Five case reports, World Journal of Gastrointestinal Oncology, 12(2), 237-247.
  • Liu, L.X., Zhang, W.H., Jiang, H.C. (2003). Current treatment for liver metastases from colorectal cancer, World J Gastroenterol, 9, 193-200.
  • Liu, W., Lin, X., Yang, F., Zeng, J., Song, H. and Cui, Y. (2016). Microwave Ablation Antenna with the ablation pattern being a figure-of-eight, 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3.
  • Lubner, M.G., Brace, C.L., Hinshaw, J.L., Lee, F.T.J. (2010). Microwave tumor ablation: mechanism of action, clinical results and devices, Journal of Vascular and Interventional Radiology, 21, 192–203.
  • Luyen, H., Hagness, S.C. and Behdad, N. (2017). A Minimally Invasive Coax-Fed Microwave Ablation Antenna with a Tapered Balun, IEEE Trans Antennas and Propagation, 65(12).
  • Luyen, H., Hagness, S.C., and Behdad, N. (2015). A balun-free helical antenna for minimally-invasive microwave ablation, IEEE Transactions Antennas Propagation, 63(3), 959–965.
  • Mohtashami, Y., Hagness, S.C., and Behdad, N. (2017). A hybrid slot/monopole antenna with directional heating patterns for microwave ablation, IEEE Transactions Antennas Propagation, 65(8)8, 3889–3896.
  • Mohtashami, Y., Luyen, H., Sawicki, J.F., Shea, J.D., Behdad, N., and Hagness, S.C. (2018). Tools for attacking tumors: Performance comparison of triaxial, choke dipole, and balun-free base-fed monopole antennas for microwave ablation, IEEE Antennas Propagation Magazine, 60(6), 52–57.
  • Morgan, B.N. (2004). Medical shape memory alloy applications—The market and its products, Materials Science and Engineering, 378, 16–23.
  • Nan, Q., Zhang, H., Xia, Y., Oiao, A., Chang, Y., and Liu, Y. (2013). Thermal Field Analysis in Microwave Ablation Therapy for Atrial Fibrillation, IEEE, 585-588.
  • Niekerk, J.V. et al. (2002). Loop Antenna Basics and Regulatory Compliance for Short-Range Radio, Microchip Technology Inc.
  • O'Rourke, A.P., Haemmerich, D., Prakash, P., Converse, M.C., Mahvi, D.M., Webster, J.G. (2007). Current status of liver tumor ablation devices, Expert Revision Medical Devices, 4(4), 523-37.
  • Phasukkit, P., Wongketsada, T. (2021). Triple coaxial-half-slot antenna scheme with deep learning-based temperature prediction for hepatic microwave ablation: Finite element analysis and in Vitro experiment, IEEE Engineering in Medicine and Biology Section.
  • Prakash, P. (2010). Theoretical modeling for hepatic microwave ablation, Open Biomedical Engineering Journal, 4, 27–38.
  • Reimann, C.H.N., Bazrafshan, B., Schußler, M., Schmidt, S., Schuster, C., Hubner, F., Vogl, T.J., and Jakoby, R. (2019). A dual mode coaxial slot applicator for microwave ablation treatment, IEEE Transactions on Microwave Theory and Techniques, 67, 1255-1264.
  • Seifert, J., Junginger, T., and Morris, D. (1998). A collective review of the world literature on hepatic cryotherapy, Journal of the Royal College of Surgeons of Edinburgh, 43(3), 141–154.
  • Seki, T., Wakabayashi, M., Nakagawa, T., Itoh, T., Shiro, T., Kunieda, K., Sato, M., Uchiyama, S. and Inoue, K. (1994). Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma, Liver Cancer, 74, 814–825.
  • Shock, S.A., Meredith, K., Warner, T.F., Sampson, L.A., Wright, A.S., Winter, T.C., Mahvi, D.M., Fine, J.P., and Lee, F.T. (2004). ‘Microwave ablation with loop antenna: In vivo porcine liver model, Radiology, 231(1), 143–149.
  • Song, C. (2010). History and current situation of shape memory alloys devices for minimally invasive surgery, Open Medical Devices Jornal, 2, 24-31.
  • Sugiyama, M., Saito, K. (2018). Article Characteristics of a Surgical Snare Using Microwave Energy, Diagnostics, 8, 83, 2018.
  • Tamilarasan, A.K., Krishnadhas, S.K., Sabapathy, S., Sarasa, A.S.T. (2021). A novel design of Rogers RT/duroid 5880 material based two turn antenna for intracranial pressure monitoring, Microsystem Technologies, 27, 3579–3588.
  • Torre, L.A., Siegel, R.L., Ward, E.M., Jemal, A. (2016). Global cancer incidence and mortality rates and trends—an update, Cancer Epidemiol Biomarkers Prevention, 25, 16–27.
  • Wright, A.S., Lee, F.T., Mahvi, D.M. (2003). Hepatic microwave ablation with multiple antenna results in synergistically larger zones of coagulation necrosis, Annals of Surgical Oncology, 10,275-283.
  • Wright, A.S., Sampson, L.A., Warner, T.F., et al. (2005). Radiofrequency versus microwave ablation in a hepatic porcine model, Radiology, 236, 132–139.
  • Yang, D. et al. (2006). A floating sleeve antenna yields localized hepatic microwave ablation, IEEE Transactions on Biomedical Engineering, 53(3), 533-537.
  • Yang, D.S., Converse, M.C., Mahvi D.M., and Webster, J.G. (2007). Expanding the bioheat equation to include tissue internal water evaporation during heating, IEEE Transactions Biomedical Engineering, 54(8),1382–1388.

EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA

Yıl 2023, Cilt: 31 Sayı: 1, 533 - 543, 29.04.2023
https://doi.org/10.31796/ogummf.1111038

Öz

Although the most preferred treatment methods in cancer treatment are still surgery and chemotherapy, microwave ablation, one of the minimally invasive thermal ablation techniques, is increasingly used in the clinic for patients who cannot afford the risks of these treatment methods. In this study, microwave ablation with a new NiTi ring antenna was performed on a freshly slaughtered beef liver as an Ex Vivo application. Design and optimization was carried out in the CST Microwave studio. Ex Vivo MWA application was carried out at 2.45 GHz, using 50 W microwave power for 5 minutes. The lowest width of the ablation zone formed along the x-axis was 14.58 mm, the highest width was 28.61 mm, the length of the ablation area along the y-axis was 58.032 mm, and the area of the ablation zone was approximately 5.44 cm2. These results show that the proposed NiTi ring antenna has the ability to achieve a sufficient thermal lesion in terms of ablation zone dimensions.

Kaynakça

  • Ahmed, M., Brace, C.L., Lee, F.T.J., and Goldberg, S.N. (2011). Principles of and advances in percutaneous ablation, Radiology, 258(2), 351–369.
  • Ako, I.P. et al. (2019). A Study of the Radiation Characteristics of a Circular Loop Antenna Using Genetic Algorithm Technique, International Journal of Applied Engineering Research, 14(7), 1499-1504.
  • Amabile, C., Ahmed, M., Solbiati, L., Meloni, M.F., Solbiati, M., Cassarino, S., Tosoratti, N., Nissenbaum, Y., Ierace, T., Goldberg, S.N. (2017). Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterization, International journal of hyperthermia, Vol. 33, No. 1, 34–42.
  • Andreano, A., Huang, Y., Meloni, M.F., Lee, F.T., Brace, C. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue, Medical Physics, 37(6), 2967– 2973.
  • Balanis, C.A. (1982). Antenna Theory: Analysis and Design, 2nd ed., Chapter 5, John Wiley & Sons Inc., New York.
  • Bolton, T. (2016). Optimal Design of Electrically Small Loop Antenna Including Surrounding Medium Effects, MSc Thesis, Georgia Institute of Technology. Brace, C.L. (2011). Dual-slot antennas for microwave tissue heating: Parametric design analysis and experimental validation, Medical Physics, 38(7), 4231–4240.
  • Brace, C.L. (2020). Microwave tissue ablation: biophysics,technology, and applications, Critical Reviews™ in Biomedical Engineering, 38, 65–78.
  • Brace, C.L., Laeseke, P.F., Van der Weide, P.D., and Lee, F.T. (2005). Microwave ablation with a triaxial antenna: Results in ex vivo bovine liver, IEEE Transactions Microwave Theory Technology, 53(1), 215–220.
  • Dielectric Properties of Body Tissues. (2021) Erişim adresi: http://niremf.ifac.cnr.it/tissprop/
  • Etoz, S. and Brace, C.L. (2018). Analysis of microwave ablation antenna optimization techniques, International journal of RF Microwave Computer Aided Eng., 28:e21224.
  • Fadlallah, A.S., El-Bagoury, N., Gad, E.R.M.S., Ahmed, A.R., El-Ousamii, G. (2014). An Overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application, Journal of Alloys Compounds, 583, 455–464.
  • Fujimoto, K. and James, J.R. (2001). Mobile Antenna Systems Handbook, 2nd ed., Artech House.
  • Ge, M., Jiang, H., Huang, X., Zhou, Y., Zhi, D., Zhao, G., Chen, Y., Wang, L., and Qiu, B. (2018). A multi-slot coaxial microwave antenna for liver tumor ablation, Physics in Medicine and Biology, 63, 1-13.
  • Goldberg, S.N., Gazelle, G.S., Dawson, S.L., Rittman, W., Mueller, P.R., Rosenthal, D.L. (1995). Tissue ablation with radiofrequenc : effect of probe size. gauge. duration. and temperature on lesion volume, Acad Radio, 2, 399-404.
  • Goldberg, S.N., Gazelle, G.S., Solbiati, L., Livraghi, T., Tanabe, K.K., Hahn, P.F., and Mueller, P.R. (1998). ‘Ablation of liver tumors using percutaneous RF therapy, Ajr american journal of roentgenology, vol. 170, no. 4, 1023–1028.
  • Görgün, A.R., Çömlekci, S., Kaya, A. (2019). Single Slot Coaxial Antenna and NiTi (Nickel Titanium) Loop Antenna Design for ISM (Industrial Scientific Medical) Band Microwave Ablation System, Medical Technologies Congress (TIPTEKNO), IEEE 2019.
  • Hamed, S.M.A. et al. (2014). Exact fields expressions for a circular loop antenna above a perfect electric conducting ground plane, Sudan Engineering Society Journal, 60(1).
  • Hancock, C.P. (2011). Electrosurgical apparatus for RF and microwave delivery, U.S. Patent, 13/992,666.
  • Hassan, E.G.M.I., Takruri, H., and Hope, M. (2016). Applicator design considerations of microwave tumor ablation, In Proc. 10th International Symposium on Communication Systems , Networks and Digital Signal Processing, 1–6.
  • Hodgson, D.A., Feldberg, I.B., Sharp, N., Cronin, N., Evans, M., and Hirschowitz, L. (1999). Microwave endometrial ablation: Development, clinical trials and outcomes at three years, British Journal of Obstetrics and Gynaecology, 106(7), 684–694.
  • Holton, A., Walsh, E., Anayiotos, A., Pohost, G., Venugopalan, R. (2002). Comparative MRI compatibility of 316 L stainless steel alloy and nickel titanium alloy stents, Original article technical, Journal of Cardiovascular Magnetic Resonance, 4(4), 423-430.
  • Hubner, F., Schreiner, R., Reimann, C., Bazrafshan, B., Kaltenbach, B., Schußler, M., Jakoby, R., and Vogl, T.J. (2019). Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver, Medical Engineering and Physics, 66, 56-64.
  • Hurter, W., Reinbold, F., and Lorenz, W. (1991). A dipole antenna for interstitial microwave hyperthermia, IEEE Transactions Microwave Theory Technology, 39, 1048–1054.
  • Ibitoye, Z.A., Nwoye, E.O., Aweda, M.A., Oremosu, A.A., Annunobi, C.C., Akanmu, O.N. (2015). Optimization of dual slot antenna using floating metallic sleeve for microwave ablation, Medical Engineering and Physics 37, 384-391.
  • Kaur, S. and Maini, S. (2014). Microwave ablation therapy for the treatment of hepatocellular carcinoma using double slot interstitial antenna, Internatıonal Journal Of Research In Computer Applıcatıons And Robotıcs, 2(1), 56-61.
  • Lencioni, R., Goletti, O, Armillotta, N., Paolicchi, A., Moretti, M., Cioni, D., Donati, F., Cicorelli, A., Ricci, S., Carrai, M., Conte, P.F., Cavina, E., and Bartolozzi, C. (1998). Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: Results of a pilot clinical trial, European Radiology, vol. 8, no. 7, 1205–1211.
  • Liang ,P., Wang, Y. (2007). Microwave ablation of hepatocellular carcinoma, Oncology, 72 (1), 124–131. Liu, E., Zong, Y., Chen, J., Zhang, X.J., Ren, R., Guo, X.C., Liu, Z.J., Lin, C.X. (2020). Cryoablation combined with radiotherapy for hepatic malignancy: Five case reports, World Journal of Gastrointestinal Oncology, 12(2), 237-247.
  • Liu, L.X., Zhang, W.H., Jiang, H.C. (2003). Current treatment for liver metastases from colorectal cancer, World J Gastroenterol, 9, 193-200.
  • Liu, W., Lin, X., Yang, F., Zeng, J., Song, H. and Cui, Y. (2016). Microwave Ablation Antenna with the ablation pattern being a figure-of-eight, 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3.
  • Lubner, M.G., Brace, C.L., Hinshaw, J.L., Lee, F.T.J. (2010). Microwave tumor ablation: mechanism of action, clinical results and devices, Journal of Vascular and Interventional Radiology, 21, 192–203.
  • Luyen, H., Hagness, S.C. and Behdad, N. (2017). A Minimally Invasive Coax-Fed Microwave Ablation Antenna with a Tapered Balun, IEEE Trans Antennas and Propagation, 65(12).
  • Luyen, H., Hagness, S.C., and Behdad, N. (2015). A balun-free helical antenna for minimally-invasive microwave ablation, IEEE Transactions Antennas Propagation, 63(3), 959–965.
  • Mohtashami, Y., Hagness, S.C., and Behdad, N. (2017). A hybrid slot/monopole antenna with directional heating patterns for microwave ablation, IEEE Transactions Antennas Propagation, 65(8)8, 3889–3896.
  • Mohtashami, Y., Luyen, H., Sawicki, J.F., Shea, J.D., Behdad, N., and Hagness, S.C. (2018). Tools for attacking tumors: Performance comparison of triaxial, choke dipole, and balun-free base-fed monopole antennas for microwave ablation, IEEE Antennas Propagation Magazine, 60(6), 52–57.
  • Morgan, B.N. (2004). Medical shape memory alloy applications—The market and its products, Materials Science and Engineering, 378, 16–23.
  • Nan, Q., Zhang, H., Xia, Y., Oiao, A., Chang, Y., and Liu, Y. (2013). Thermal Field Analysis in Microwave Ablation Therapy for Atrial Fibrillation, IEEE, 585-588.
  • Niekerk, J.V. et al. (2002). Loop Antenna Basics and Regulatory Compliance for Short-Range Radio, Microchip Technology Inc.
  • O'Rourke, A.P., Haemmerich, D., Prakash, P., Converse, M.C., Mahvi, D.M., Webster, J.G. (2007). Current status of liver tumor ablation devices, Expert Revision Medical Devices, 4(4), 523-37.
  • Phasukkit, P., Wongketsada, T. (2021). Triple coaxial-half-slot antenna scheme with deep learning-based temperature prediction for hepatic microwave ablation: Finite element analysis and in Vitro experiment, IEEE Engineering in Medicine and Biology Section.
  • Prakash, P. (2010). Theoretical modeling for hepatic microwave ablation, Open Biomedical Engineering Journal, 4, 27–38.
  • Reimann, C.H.N., Bazrafshan, B., Schußler, M., Schmidt, S., Schuster, C., Hubner, F., Vogl, T.J., and Jakoby, R. (2019). A dual mode coaxial slot applicator for microwave ablation treatment, IEEE Transactions on Microwave Theory and Techniques, 67, 1255-1264.
  • Seifert, J., Junginger, T., and Morris, D. (1998). A collective review of the world literature on hepatic cryotherapy, Journal of the Royal College of Surgeons of Edinburgh, 43(3), 141–154.
  • Seki, T., Wakabayashi, M., Nakagawa, T., Itoh, T., Shiro, T., Kunieda, K., Sato, M., Uchiyama, S. and Inoue, K. (1994). Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma, Liver Cancer, 74, 814–825.
  • Shock, S.A., Meredith, K., Warner, T.F., Sampson, L.A., Wright, A.S., Winter, T.C., Mahvi, D.M., Fine, J.P., and Lee, F.T. (2004). ‘Microwave ablation with loop antenna: In vivo porcine liver model, Radiology, 231(1), 143–149.
  • Song, C. (2010). History and current situation of shape memory alloys devices for minimally invasive surgery, Open Medical Devices Jornal, 2, 24-31.
  • Sugiyama, M., Saito, K. (2018). Article Characteristics of a Surgical Snare Using Microwave Energy, Diagnostics, 8, 83, 2018.
  • Tamilarasan, A.K., Krishnadhas, S.K., Sabapathy, S., Sarasa, A.S.T. (2021). A novel design of Rogers RT/duroid 5880 material based two turn antenna for intracranial pressure monitoring, Microsystem Technologies, 27, 3579–3588.
  • Torre, L.A., Siegel, R.L., Ward, E.M., Jemal, A. (2016). Global cancer incidence and mortality rates and trends—an update, Cancer Epidemiol Biomarkers Prevention, 25, 16–27.
  • Wright, A.S., Lee, F.T., Mahvi, D.M. (2003). Hepatic microwave ablation with multiple antenna results in synergistically larger zones of coagulation necrosis, Annals of Surgical Oncology, 10,275-283.
  • Wright, A.S., Sampson, L.A., Warner, T.F., et al. (2005). Radiofrequency versus microwave ablation in a hepatic porcine model, Radiology, 236, 132–139.
  • Yang, D. et al. (2006). A floating sleeve antenna yields localized hepatic microwave ablation, IEEE Transactions on Biomedical Engineering, 53(3), 533-537.
  • Yang, D.S., Converse, M.C., Mahvi D.M., and Webster, J.G. (2007). Expanding the bioheat equation to include tissue internal water evaporation during heating, IEEE Transactions Biomedical Engineering, 54(8),1382–1388.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Rıfat Görgün 0000-0003-1416-5570

Adnan Kaya 0000-0002-9943-6925

Selçuk Çömlekci 0000-0003-1389-6435

Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 29 Nisan 2023
Kabul Tarihi 24 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 31 Sayı: 1

Kaynak Göster

APA Görgün, A. R., Kaya, A., & Çömlekci, S. (2023). EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(1), 533-543. https://doi.org/10.31796/ogummf.1111038
AMA Görgün AR, Kaya A, Çömlekci S. EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA. ESOGÜ Müh Mim Fak Derg. Nisan 2023;31(1):533-543. doi:10.31796/ogummf.1111038
Chicago Görgün, Ahmet Rıfat, Adnan Kaya, ve Selçuk Çömlekci. “EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, sy. 1 (Nisan 2023): 533-43. https://doi.org/10.31796/ogummf.1111038.
EndNote Görgün AR, Kaya A, Çömlekci S (01 Nisan 2023) EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 1 533–543.
IEEE A. R. Görgün, A. Kaya, ve S. Çömlekci, “EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA”, ESOGÜ Müh Mim Fak Derg, c. 31, sy. 1, ss. 533–543, 2023, doi: 10.31796/ogummf.1111038.
ISNAD Görgün, Ahmet Rıfat vd. “EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/1 (Nisan 2023), 533-543. https://doi.org/10.31796/ogummf.1111038.
JAMA Görgün AR, Kaya A, Çömlekci S. EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA. ESOGÜ Müh Mim Fak Derg. 2023;31:533–543.
MLA Görgün, Ahmet Rıfat vd. “EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 31, sy. 1, 2023, ss. 533-4, doi:10.31796/ogummf.1111038.
Vancouver Görgün AR, Kaya A, Çömlekci S. EX VIVO MICROWAVE ABLATION APPLICATION AT 2.45 GHz BY A NOVEL NITI SHAPE MEMORY ALLOY BASED RING ANTENNA. ESOGÜ Müh Mim Fak Derg. 2023;31(1):533-4.

20873 13565 13566 15461 13568  14913