NiCr İÇERİKLİ TERMAL SPREY KAPLAMALARIN KATI PARTİKÜL EROZYON DAVRANIŞLARININ BELİRLENMESİ
Yıl 2023,
Cilt: 31 Sayı: 3, 808 - 815, 16.12.2023
Sefa Erdem Yılmaz
,
Gülfem Binal
,
Yasin Ozgurluk
,
Derviş Özkan
,
Abdullah Karaoglanli
Öz
Mühendislik uygulamalarında katı partikül erozyonu (SPE) nedeniyle malzemeler çalışma koşulları altında hasara uğramaktadır. Malzeme yüzeylerinin erozyon, oksidasyon ve korozyon gibi hasar mekanizmalarına karşı korunması için kullanılan yöntemlerden birisi de termal sprey kaplama uygulamalarıdır. Bu çalışmada, yüksek hızlı oksi-yakıt (HVOF) termal sprey kaplama yöntemi ile 316L paslanmaz çelik altlık üzerine biriktirilen NiCr kaplamaların katı partikül erozyon davranışları incelenmiştir. SPE deneyleri aşındırıcı alümina (Al2O3) partikülleri ve farklı çarpma açıları kullanılarak gerçekleştirilmiştir. Deneyler, özel bir test düzeneği yardımı ile oda sıcaklığında yapılmıştır. Değişen çarpma açılarının yüzeyler üzerindeki etkisi, taramalı elektron mikroskobu (SEM) ve 3D profilometre kullanılarak incelenmiş ve literatür çalışmaları ile karşılaştırmalı olarak tartışılmıştır. SPE testleri sonrası en yüksek erozyon oranı 60°’lik çarpma açısında görülürken, bu değeri sırasıyla 30° ve 90°’lik çarpma açılarındaki erozyon oranları takip etmiştir. SEM analizleri sonucu gerçekleştirilen tüm SPE testlerinde numune yüzeylerine aşındırıcı Al2O3 partiküllerinin gömüldüğü ve farklı hasar oluşumlarının meydana geldiği tespit edilmiştir.
Kaynakça
- Akbarzadeh, E., Elsaadawy, E., Sherik, A. M., Spelt, J. K., Papini, M. (2012). The solid particle erosion of 12 metals using magnetite erodent. Wear, 282, 40-51. doi: https://doi.org/10.1016/j.wear.2012.01.021
- Binal, G. (2023). Isothermal oxidation and hot corrosion behavior of HVOF sprayed 80Ni-20Cr coatings at 750° C. Surface and Coatings Technology, 454, 129141. doi: https://doi.org/10.1016/j.surfcoat.2022.129141
- Bousser, E., Martinu, L., Klemberg-Sapieha, J. E. (2014). Solid particle erosion mechanisms of protective coatings for aerospace applications. Surface and Coatings Technology, 257, 165-181. doi: https://doi.org/10.1016/j.surfcoat.2014.08.037
- Chen, Q., Li, D. Y. (2003). Computer simulation of solid particle erosion. Wear, 254(3-4), 203-210. doi: https://doi.org/10.1016/S0043-1648(03)00006-1
- Day, J., Huang, X., Richards, N. L. (2005). Examination of a grit-blasting process for thermal spraying using statistical methods. Journal of Thermal Spray Technology, 14, 471-479. doi: 10.1361/105996305X76469
- Debasish, D., Panigrahi, A., Sengupta, P., Bajpai, S. (2022). Erosive wear characteristic of Mo-TiN composite coatings on turbocharger compressor wheel using Taguchi experimental design. Materials Today: Proceedings, 66, 534-539. doi: https://doi.org/10.1016/j.matpr.2022.06.114
- Derelizade, K., Rincon, A., Venturi, F., Wellman, R.G., Kholobystov, A., Hussain, T. (2022). High temperature (900 C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray. Surface and Coatings Technology, 432, 128063. doi: https://doi.org/10.1016/j.surfcoat.2021.128063
- Getu, H., Spelt, J. K., Papini, M. (2012). Conditions leading to the embedding of angular and spherical particles during the solid particle erosion of polymers. Wear, 292, 159-168. doi: https://doi.org/10.1016/j.wear.2012.05.017
- Guduru, R. K., Dixit, U., Kumar, A. (2022). A critical review on thermal spray based manufacturing technologies. Materials Today: Proceedings, 62(13), 7265-7269. doi: https://doi.org/10.1016/j.matpr.2022.04.107
- Hadavi, V., Arani, N. H., Papini, M. (2019). Numerical and experimental investigations of particle embedment during the incubation period in the solid particle erosion of ductile materials. Tribology International, 129, 38-45. doi: https://doi.org/10.1016/j.triboint.2018.08.013
- Hadavi, V., Papini, M. (2015). Numerical modeling of particle embedment during solid particle erosion of ductile materials. Wear, 342, 310-321. doi: https://doi.org/10.1016/j.wear.2015.09.008
- Karaoglanli, A. C. (2023). Structure and durability evaluation of blast furnace slag coatings and thermal barrier coatings (TBCs) under high temperature conditions. Surface and Coatings Technology, 452, 129087. doi: https://doi.org/10.1016/j.surfcoat.2022.129087
- Li, M., Christofides, P.D. (2009). Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review. Journal of Thermal Spray Techolgy, 18, 753–768. doi: https://doi.org/10.1007/s11666-009-9309-2
- Molinari, J. F., Ortiz, M. (2002). A study of solid-particle erosion of metallic targets. International Journal of Impact Engineering, 27(4), 347-358. doi: https://doi.org/10.1016/S0734-743X(01)00055-0
- Odabas, O., Ozgurluk, Y., Ozkan, D., Binal, G., Calis, I., Karaoglanli, A.C. (2022). Investigation of vermiculite infiltration effect on microstructural properties of thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition method (EB-PVD). Surface and Coatings Technology, 443, 128645. doi: https://doi.org/10.1016/j.surfcoat.2022.128645
- Ozgurluk, Y. (2022). Investigation of oxidation and hot corrosion behavior of molybdenum coatings produced by high-velocity oxy-fuel coating method. Surface and Coatings Technology, 444, 128641. doi: https://doi.org/10.1016/j.surfcoat.2022.128641
- Ozkan, D. (2023). Structural characteristics and wear, oxidation, hot corrosion behaviors of HVOF sprayed Cr3C2-NiCr hardmetal coatings. Surface and Coatings Technology, 457, 129319. doi: https://doi.org/10.1016/j.surfcoat.2023.129319
- Özkan, D., Erdoğan, G., Özgurluk, Y., Binal, G., Yılmaz, S. E., Karaoglanli, A. C. (2023). YSZ seramik üst kaplamaya sahip termal bariyer kaplamaların (TBCs) katı partikül erozyon (SPE) davranışlarının incelenmesi. Journal of Materials and Mechatronics: A, 4(1), 100-115. doi: https://doi.org/10.55546/jmm.1232869
- Pradeep, D. G., Venkatesh, C. V., Nithin, H. S. (2022). Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings. Journal of Bio and Tribo Corrosion, 8, 30. doi: https://doi.org/10.1007/s40735-022-00631-x
- Prashar, G., Vasudev, H. (2022). A review on the influence of process parameters and heat treatment on the corrosion performance of Ni-based thermal spray coatings. Surface Review and Letters, 29(01), 2230001. doi: https://doi.org/10.1142/S0218625X22300015
- Ramesh, M. R., Prakash, S., Nath, S. K., Sapra, P. K., Venkataraman, B. (2010). Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear, 269(3-4), 197-205. doi: https://doi.org/10.1016/j.wear.2010.03.019
- Sidhu, H. S., Sidhu, B. S., Prakash, S. (2006). Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. Journal of materials engineering and performance, 15, 699-704. doi: 10.1361/105994906X150713
- Sidhu, H. S., Sidhu, B. S., Prakash, S. (2007). Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings. Surface and Coatings Technology, 202(2), 232-238. doi: https://doi.org/10.1016/j.surfcoat.2007.05.035
- Sundararajan, G., Roy, M. (1997). Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology international, 30(5), 339-359. doi: https://doi.org/10.1016/S0301-679X(96)00064-3
- Swain, B., Mantry, S., Mohapatra, S. S., Mishra, S. C., Behera, A. (2022). Investigation of Tribological Behavior of Plasma Sprayed NiTi Coating for Aerospace Application. Journal of. Thermal. Spray Technology 31, 2342–2369. doi: https://doi.org/10.1007/s11666-022-01452-7
- Tan, J. C., Looney, L., Hashmi, M. S. J. (1999). Component repair using HVOF thermal spraying. Journal of Materials Processing Technology, 92, 203-208. doi: https://doi.org/10.1016/S0924-0136(99)00113-2
- Tewari, U. S., Harsha, A. P., Häger, A. M., Friedrich, K. (2003). Solid particle erosion of carbon fibre–and glass fibre–epoxy composites. Composites Science and Technology, 63(3-4), 549-557. doi: https://doi.org/10.1016/S0266-3538(02)00210-5
- Thakur, L., Arora, N. (2013). Solid particle erosion behavior of WC-CoCr nanostructured coating. Tribology Transactions, 56(5), 781-788. doi: https://doi.org/10.1080/10402004.2013.797532
- Vicenzi, J., Marques, C. M., Bergmann, C. P. (2008). Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation. Surface and Coatings Technology, 202(15), 3688-3697. doi: https://doi.org/10.1016/j.surfcoat.2008.01.010
- Wang, Y. F., Yang, Z. G. (2008). Finite element model of erosive wear on ductile and brittle materials. Wear, 265(5-6), 871-878. doi: https://doi.org/10.1016/j.wear.2008.01.014
- Yılmaz, S. E. (2023). HVOF tekniği kullanılarak üretilen WC-Co ve NiCr kaplamaların katı partikül erozif aşınma davranışlarının incelenmesi (Yüksek Lisans Tezi). Bartın Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bartın.
- Zhang, H., Dong, X., Chen, S. (2017). Solid particle erosion-wear behaviour of Cr3C2–NiCr coating on Ni-based superalloy. Advances in Mechanical Engineering, 9(3), 1-9. doi: 10.1177/1687814017694580
DETERMINATION OF SOLID PARTICLE EROSION BEHAVIORS OF NiCr CONTAINING THERMAL SPRAY COATINGS
Yıl 2023,
Cilt: 31 Sayı: 3, 808 - 815, 16.12.2023
Sefa Erdem Yılmaz
,
Gülfem Binal
,
Yasin Ozgurluk
,
Derviş Özkan
,
Abdullah Karaoglanli
Öz
In engineering applications, materials are damaged under operating conditions due to solid particle erosion (SPE). One of the methods used to protect material surfaces against damage mechanisms such as erosion, oxidation, and corrosion is thermal spray coating application. In this study, the solid particle erosion (SPE) behavior of NiCr coatings deposited on 316L stainless steel substrates by high velocity oxy-fuel (HVOF) thermal spray coating method was investigated. SPE experiments were performed using abrasive alumina (Al2O3) particles and different impact angles. The experiments were carried out at room temperature with the help of a special test setup. The effect of varying impact angles on the surfaces was investigated using scanning electron microscopy (SEM) and a 3D profilometer and discussed in comparison with literature studies. After SPE tests, the highest erosion rate was realized at an impact angle of 60°, followed by erosion rates at impact angles of 30° and 90°, respectively. As a result of SEM analysis, it was determined that abrasive Al2O3 particles were embedded in the sample surfaces in all SPE tests performed, and different damage formations occurred.
Kaynakça
- Akbarzadeh, E., Elsaadawy, E., Sherik, A. M., Spelt, J. K., Papini, M. (2012). The solid particle erosion of 12 metals using magnetite erodent. Wear, 282, 40-51. doi: https://doi.org/10.1016/j.wear.2012.01.021
- Binal, G. (2023). Isothermal oxidation and hot corrosion behavior of HVOF sprayed 80Ni-20Cr coatings at 750° C. Surface and Coatings Technology, 454, 129141. doi: https://doi.org/10.1016/j.surfcoat.2022.129141
- Bousser, E., Martinu, L., Klemberg-Sapieha, J. E. (2014). Solid particle erosion mechanisms of protective coatings for aerospace applications. Surface and Coatings Technology, 257, 165-181. doi: https://doi.org/10.1016/j.surfcoat.2014.08.037
- Chen, Q., Li, D. Y. (2003). Computer simulation of solid particle erosion. Wear, 254(3-4), 203-210. doi: https://doi.org/10.1016/S0043-1648(03)00006-1
- Day, J., Huang, X., Richards, N. L. (2005). Examination of a grit-blasting process for thermal spraying using statistical methods. Journal of Thermal Spray Technology, 14, 471-479. doi: 10.1361/105996305X76469
- Debasish, D., Panigrahi, A., Sengupta, P., Bajpai, S. (2022). Erosive wear characteristic of Mo-TiN composite coatings on turbocharger compressor wheel using Taguchi experimental design. Materials Today: Proceedings, 66, 534-539. doi: https://doi.org/10.1016/j.matpr.2022.06.114
- Derelizade, K., Rincon, A., Venturi, F., Wellman, R.G., Kholobystov, A., Hussain, T. (2022). High temperature (900 C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray. Surface and Coatings Technology, 432, 128063. doi: https://doi.org/10.1016/j.surfcoat.2021.128063
- Getu, H., Spelt, J. K., Papini, M. (2012). Conditions leading to the embedding of angular and spherical particles during the solid particle erosion of polymers. Wear, 292, 159-168. doi: https://doi.org/10.1016/j.wear.2012.05.017
- Guduru, R. K., Dixit, U., Kumar, A. (2022). A critical review on thermal spray based manufacturing technologies. Materials Today: Proceedings, 62(13), 7265-7269. doi: https://doi.org/10.1016/j.matpr.2022.04.107
- Hadavi, V., Arani, N. H., Papini, M. (2019). Numerical and experimental investigations of particle embedment during the incubation period in the solid particle erosion of ductile materials. Tribology International, 129, 38-45. doi: https://doi.org/10.1016/j.triboint.2018.08.013
- Hadavi, V., Papini, M. (2015). Numerical modeling of particle embedment during solid particle erosion of ductile materials. Wear, 342, 310-321. doi: https://doi.org/10.1016/j.wear.2015.09.008
- Karaoglanli, A. C. (2023). Structure and durability evaluation of blast furnace slag coatings and thermal barrier coatings (TBCs) under high temperature conditions. Surface and Coatings Technology, 452, 129087. doi: https://doi.org/10.1016/j.surfcoat.2022.129087
- Li, M., Christofides, P.D. (2009). Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review. Journal of Thermal Spray Techolgy, 18, 753–768. doi: https://doi.org/10.1007/s11666-009-9309-2
- Molinari, J. F., Ortiz, M. (2002). A study of solid-particle erosion of metallic targets. International Journal of Impact Engineering, 27(4), 347-358. doi: https://doi.org/10.1016/S0734-743X(01)00055-0
- Odabas, O., Ozgurluk, Y., Ozkan, D., Binal, G., Calis, I., Karaoglanli, A.C. (2022). Investigation of vermiculite infiltration effect on microstructural properties of thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition method (EB-PVD). Surface and Coatings Technology, 443, 128645. doi: https://doi.org/10.1016/j.surfcoat.2022.128645
- Ozgurluk, Y. (2022). Investigation of oxidation and hot corrosion behavior of molybdenum coatings produced by high-velocity oxy-fuel coating method. Surface and Coatings Technology, 444, 128641. doi: https://doi.org/10.1016/j.surfcoat.2022.128641
- Ozkan, D. (2023). Structural characteristics and wear, oxidation, hot corrosion behaviors of HVOF sprayed Cr3C2-NiCr hardmetal coatings. Surface and Coatings Technology, 457, 129319. doi: https://doi.org/10.1016/j.surfcoat.2023.129319
- Özkan, D., Erdoğan, G., Özgurluk, Y., Binal, G., Yılmaz, S. E., Karaoglanli, A. C. (2023). YSZ seramik üst kaplamaya sahip termal bariyer kaplamaların (TBCs) katı partikül erozyon (SPE) davranışlarının incelenmesi. Journal of Materials and Mechatronics: A, 4(1), 100-115. doi: https://doi.org/10.55546/jmm.1232869
- Pradeep, D. G., Venkatesh, C. V., Nithin, H. S. (2022). Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings. Journal of Bio and Tribo Corrosion, 8, 30. doi: https://doi.org/10.1007/s40735-022-00631-x
- Prashar, G., Vasudev, H. (2022). A review on the influence of process parameters and heat treatment on the corrosion performance of Ni-based thermal spray coatings. Surface Review and Letters, 29(01), 2230001. doi: https://doi.org/10.1142/S0218625X22300015
- Ramesh, M. R., Prakash, S., Nath, S. K., Sapra, P. K., Venkataraman, B. (2010). Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear, 269(3-4), 197-205. doi: https://doi.org/10.1016/j.wear.2010.03.019
- Sidhu, H. S., Sidhu, B. S., Prakash, S. (2006). Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. Journal of materials engineering and performance, 15, 699-704. doi: 10.1361/105994906X150713
- Sidhu, H. S., Sidhu, B. S., Prakash, S. (2007). Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings. Surface and Coatings Technology, 202(2), 232-238. doi: https://doi.org/10.1016/j.surfcoat.2007.05.035
- Sundararajan, G., Roy, M. (1997). Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology international, 30(5), 339-359. doi: https://doi.org/10.1016/S0301-679X(96)00064-3
- Swain, B., Mantry, S., Mohapatra, S. S., Mishra, S. C., Behera, A. (2022). Investigation of Tribological Behavior of Plasma Sprayed NiTi Coating for Aerospace Application. Journal of. Thermal. Spray Technology 31, 2342–2369. doi: https://doi.org/10.1007/s11666-022-01452-7
- Tan, J. C., Looney, L., Hashmi, M. S. J. (1999). Component repair using HVOF thermal spraying. Journal of Materials Processing Technology, 92, 203-208. doi: https://doi.org/10.1016/S0924-0136(99)00113-2
- Tewari, U. S., Harsha, A. P., Häger, A. M., Friedrich, K. (2003). Solid particle erosion of carbon fibre–and glass fibre–epoxy composites. Composites Science and Technology, 63(3-4), 549-557. doi: https://doi.org/10.1016/S0266-3538(02)00210-5
- Thakur, L., Arora, N. (2013). Solid particle erosion behavior of WC-CoCr nanostructured coating. Tribology Transactions, 56(5), 781-788. doi: https://doi.org/10.1080/10402004.2013.797532
- Vicenzi, J., Marques, C. M., Bergmann, C. P. (2008). Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation. Surface and Coatings Technology, 202(15), 3688-3697. doi: https://doi.org/10.1016/j.surfcoat.2008.01.010
- Wang, Y. F., Yang, Z. G. (2008). Finite element model of erosive wear on ductile and brittle materials. Wear, 265(5-6), 871-878. doi: https://doi.org/10.1016/j.wear.2008.01.014
- Yılmaz, S. E. (2023). HVOF tekniği kullanılarak üretilen WC-Co ve NiCr kaplamaların katı partikül erozif aşınma davranışlarının incelenmesi (Yüksek Lisans Tezi). Bartın Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bartın.
- Zhang, H., Dong, X., Chen, S. (2017). Solid particle erosion-wear behaviour of Cr3C2–NiCr coating on Ni-based superalloy. Advances in Mechanical Engineering, 9(3), 1-9. doi: 10.1177/1687814017694580