Araştırma Makalesi
BibTex RIS Kaynak Göster

SYNTHESIS OF DIPHENYLMETHANE OVER TUNGSTOPHOSPHORIC ACID MODIFIED H-BETA ZEOLITE CATALYSTS

Yıl 2024, Cilt: 32 Sayı: 3, 1556 - 1564, 22.12.2024
https://doi.org/10.31796/ogummf.1464296

Öz

In this study, the synthesis of diphenylmethane (DPM) from the reaction of benzene with benzyl alcohol over tungstophosphoric acid (TPA) supported on H-Beta (HB) zeolite was investigated. TPA loadings on the support zeolite ranging from 5 to 20% w/w were achieved using the wet impregnation method, and the supported catalysts were subjected to calcination treatment. The prepared catalysts were characterized by ICP-OES, XRD, nitrogen adsorption-desorption isotherms, temperature-programmed desorption of ammonia (NH3-TPD), and FT-IR. The results showed that 5%TPA-HB had a higher catalytic performance than the other prepared catalysts, with 98.9 % benzyl alcohol conversion and 87.3 % diphenylmethane selectivity. The study suggested that 5%TPA-HB has potential applications in the synthesis of DPM owing to a good combination of suitable pore size and large accessible strong acid sites.

Proje Numarası

19ADP079, 20ADP151

Kaynakça

  • Akyalcin, S., Akyalcin, L. & Bjørgen, M. (2019). Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous and Mesoporous Materials, 273, 256–264. doi: https://doi.org/10.1016/j.micromeso.2018.07.014
  • Almulla, F. M., Ali, S. A., Aldossary, M. R., Alnaimi, E. I., Jumah, A. bin & Garforth, A. A. (2020). Transalkylation of 1,2,4-trimethylbenzene with toluene over large pore zeolites: Role of pore structure and acidity. Applied Catalysis A: General, 608, 117886. doi: https://doi.org/10.1016/j.apcata.2020.117886
  • Atalay, B. & Gündüz, G. (2011). Isomerizaton of α-pinene over H3PW12O40 catalysts supported on natural zeolite. Chemical Engineering Journal, 168(3), 1311–1318. doi: https://doi.org/10.1016/j.cej.2011.02.037
  • Bai, G., Li, T., Yang, Y., Zhang, H., Lan, X., Li, F., Han, J., Ma, Z., Chen, Q. & Chen, G. (2012). Microwave-assisted Friedel-Crafts acylation of indole with acetic anhydride over tungstophosphoric acid modified Hβ zeolite. Catalysis Communications, 29, 114–117. doi: https://doi.org/10.1016/j.catcom.2012.09.028
  • Baroi, C. & Dalai, A. K. (2014). Esterification of free fatty acids (FFA) of Green Seed Canola (GSC) oil using H-Y zeolite supported 12-Tungstophosphoric acid (TPA). Applied Catalysis A: General, 485, 99–107. doi: https://doi.org/10.1016/j.apcata.2014.07.033
  • Bhatt, N. & Patel, A. (2011). Supported 12-tungstophosphoricacid: A recoverable solid acid catalyst for liquid phase Friedel-Crafts alkylation of phenol. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 356–362. doi: https://doi.org/10.1016/j.jtice.2010.07.017
  • Candu, N., Florea, M., Coman, S. M. & Parvulescu, V. I. (2011). Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 393(1–2), 206–214. doi: https://doi.org/10.1016/j.apcata.2010.11.044
  • Candu, N., Wuttke, S., Kemnitz, E., Coman, S. M. & Parvulescu, V. I. (2012). Replacing benzyl chloride with benzyl alcohol in heterogeneous catalytic benzylation of aromatic compounds. Pure and Applied Chemistry, 84(3), 427–437. doi: https://doi.org/10.1351/PAC-CON-11-09-34
  • Chaube, V. D. (2004). Benzylation of benzene to diphenylmethane using zeolite catalysts. Catalysis Communications, 5(6), 321–326. doi: https://doi.org/10.1016/j.catcom.2004.02.013
  • Devassy, B. M. & Halligudi, S. B. (2005). Zirconia-supported heteropoly acids: Characterization and catalytic behavior in liquid-phase veratrole benzoylation. Journal of Catalysis, 236(2), 313–323. doi: https://doi.org/10.1016/j.jcat.2005.09.016
  • Freitas, E. F., Araújo, Á. A. L., Paiva, M. F., Dias, S. C. L. & Dias, J. A. (2018). Comparative acidity of BEA and Y zeolite composites with 12-tungstophosphoric and 12-tungstosilicic acids. Molecular Catalysis, 458, 152–160. doi: https://doi.org/10.1016/j.mcat.2018.03.005
  • Freitas, E. F., Paiva, M. F., Dias, S. C. L. & Dias, J. A. (2017). Generation and characterization of catalytically active sites of hetoropolyacids on zeolite Y for liquid-phase esterification. Catalysis Today, 289, 70–77. doi: http://dx.doi.org/10.1016/j.cattod.2016.08.010
  • Jansen, J. C., Creyghton, E. J., Njo, S. L., van Koningsveld, H. & van Bekkum, H. (1997). On the remarkable behaviour of zeolite Beta in acid catalysis. Catalysis Today, 38(2), 205–212. doi: https://doi.org/10.1016/S0920-5861(97)00070-9
  • Jin, H., Ansari, M. B., Jeong, E. Y. & Park, S. E. (2012). Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. Journal of Catalysis, 291, 55–62. doi: https://doi.org/10.1016/j.jcat.2012.04.006
  • Jovic, A., Bajuk-Bogdanovic, D., Nedic Vasiljevic, B., Milojevic-Rakic, M., Krajisnik, D., Dondur, V., Popa, A., Uskokovic-Markovic, S. & Holclajtner-Antunovic, M. (2017). Synthesis and characterization of 12-phosphotungstic acid supported on BEA zeolite. Materials Chemistry and Physics, 186, 430-437. doi: http://dx.doi.org/10.1016/j.matchemphys.2016.11.015
  • Kamalakar, G., Komura, K., Kubota, Y. & Sugi, Y. (2006). Friedel-Crafts benzylation of aromatics with benzyl alcohols catalyzed by heteropoly acids supported on mesoporous silica. Journal of Chemical Technology and Biotechnology, 81(6), 981–988. doi: https://doi.org/10.1002/jctb.1488
  • Karabulut, D. & Akyalcin, S. (2021). Friedel-Crafts alkylation of benzene with benzyl alcohol over H-MCM-22. International Journal of Chemical Reactor Engineering, 19(5), 541–551. doi: https://doi.org/10.1515/ijcre-2020-0175
  • Katryniok, B., Paul, S., Capron, M., Bellière-Baca, V., Rey, P. & Dumeignil, F. (2012). Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol. ChemSusChem, 5(7), 1298–1306. doi: https://doi.org/10.1002/cssc.201100635
  • Kozhevnikov, I. V. (2007). Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical, 262(1–2), 86–92. doi: https://doi.org/10.1016/j.molcata.2006.08.072
  • Kuai, L., Wang, M., Meng, X., Shi, L. & Liu, N. (2022). W Modified HY Zeolite as Catalyst for Alkylation of Aromatic. Catalysis Letters, 152(8), 2480–2490. doi: https://doi.org/10.1007/s10562-021-03820-4
  • Kurnia, I., Karnjanakom, S., Bayu, A., Yoshida, A., Rizkiana, J., Prakoso, T., Abudula, A. & Guan, G. (2017). In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites. Fuel Processing Technology, 167, 730–737. doi: https://doi.org/10.1016/j.fuproc.2017.08.026
  • Leng, K., Sun, S., Wang, B., Sun, L., Xu, W. & Sun, Y. (2012). Benzylation of benzene with benzyl chloride on iron-containing mesoporous mordenite. Catalysis Communications, 28, 64–68. doi: https://doi.org/10.1016/j.catcom.2012.08.016
  • Li, J., Zhou, Y., Mao, D., Chen, G., Wang, X., Yang, X., Wang, M., Peng, L. & Wang, J. (2014). Heteropolyanion-based ionic liquid-functionalized mesoporous copolymer catalyst for Friedel-Crafts benzylation of arenes with benzyl alcohol. Chemical Engineering Journal, 254, 54–62. doi: https://doi.org/10.1016/j.cej.2014.05.124
  • Narkhede, N. & Patel, A. (2013). Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite hβ. Industrial and Engineering Chemistry Research, 52(38), 13637–13644. doi: https://doi.org/10.1021/ie402230v
  • Pithadia, D., Patel, A. & Hatiya, V. (2022). 12-Tungstophosphoric acid anchored to MCM-22, as a novel sustainable catalyst for the synthesis of potential biodiesel blend, levulinate ester. Renewable Energy, 187, 933–943. doi: https://doi.org/10.1016/j.renene.2022.01.106
  • Sakthivel, A., Komura, K. & Sugi, Y. (2008). MCM-48 supported tungstophosphoric acid: An efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 47(8), 2538–2544. doi: https://doi.org/10.1021/ie071314z
  • Satam, J. R. & Jayaram, R. V. (2008). Liquid phase Friedel-Crafts benzylation of aromatics on a polymer-supported 12-tungstophosphoric acid catalyst. Catalysis Communications, 9(9), 1937–1940. doi: https://doi.org/10.1016/j.catcom.2008.03.018
  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. doi: https://doi.org/10.1351/pac198557040603
  • Singh, A. P., Bhattacharya, D. & Sharma, S. (1995). Benzoylation of toluene with benzoyl chloride over zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 102(3), 139–145. doi: https://doi.org/10.1016/1381-1169(95)00104-2
  • Sun, Y. & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1–2), 11–16. doi: https://doi.org/10.1016/j.apcata.2007.08.015
  • Viswanadham, B., Nagaraju, N., Rohitha, C. N., Vishwanathan, V. & Chary, K. V. R. (2018). Synthesis, Characterization and Catalytic Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Supported Y-Zeolite Catalysts. Catalysis Letters, 148(1), 397–406. doi: https://doi.org/10.1007/s10562-017-2236-9
  • Viswanadham, B., Pavankumar, V. & Chary, K. V. R. (2014). Vapor phase dehydration of glycerol to acrolein over phosphotungstic acid catalyst supported on niobia. Catalysis Letters, 144(4), 744–755. doi: https://doi.org/10.1007/s10562-014-1204-x
  • Wang, Y., Sun, Y., Lancelot, C., Lamonier, C., Morin, J. C., Revel, B., Delevoye, L. & Rives, A. (2015). Effect of post treatment on the local structure of hierarchical Beta prepared by desilication and the catalytic performance in Friedel-Crafts alkylation. Microporous and Mesoporous Materials, 206, 42–51. doi: https://doi.org/10.1016/j.micromeso.2014.12.017
  • Wang, Y., Song, H. & Sun, X. (2016). Alkylation of toluene with tert-butyl alcohol over HPW-modified Hβ zeolite. Cuihua Xuebao/Chinese Journal of Catalysis, 37(12), 2134–2141. doi: https://doi.org/10.1016/S1872-2067(16)62587-1
  • Wang, Z. & Liu, L. (2021). Mesoporous silica supported phosphotungstic acid catalyst for glycerol dehydration to acrolein. Catalysis Today, 376, 55–64. doi: https://doi.org/10.1016/j.cattod.2020.08.007
  • Wu, Y., Ye, X., Yang, X., Wang, X., Chu, W. & Hu, Y. (1996). Heterogenization of Heteropolyacids: A General Discussion on the Preparation of Supported Acid Catalysts. Industrial and Engineering Chemistry Research, 35(8), 2546–2560. doi: https://doi.org/10.1021/ie950473s
  • Yin, D., Li, C., Tao, L., Yu, N., Hu, S. & Yin, D. (2006). Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. Journal of Molecular Catalysis A: Chemical, 245(1–2), 260–265. doi: https://doi.org/10.1016/j.molcata.2005.10.010
  • Zeng, X., Wang, Z., Ding, J., Wang, L., Jiang, Y., Stampfl, C., Hunger, M. & Huang, J. (2019). Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity. Journal of Catalysis, 380, 9–20. doi: https://doi.org/10.1016/j.jcat.2019.09.035

TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ

Yıl 2024, Cilt: 32 Sayı: 3, 1556 - 1564, 22.12.2024
https://doi.org/10.31796/ogummf.1464296

Öz

Bu çalışmada, H-Beta (HB) zeolit destekli tungstofosforik asit (TPA) üzerinde benzenin benzil alkol ile reaksiyonundan difenilmetan (DPM) sentezi araştırılmıştır. Destek zeoliti üzerinde ağırlıkça %5 ila %20 arasında değişen TPA yüklemeleri ıslak emdirme yöntemi kullanılarak elde edilmiş ve desteklenen katalizörler kalsinasyon işlemine tabi tutulmuştur. Hazırlanan katalizörler ICP-OES, XRD, azot adsorpsiyon-desorpsiyon izotermleri, amonyağın sıcaklık programlı desorpsiyonu (NH3-TPD) ve FT-IR ile karakterize edilmiştir. Sonuçlar, %98,9 benzil alkol dönüşümü ve %87,3 difenilmetan seçiciliği ile %5TPA-HB'nin hazırlanan diğer katalizörlerden daha yüksek bir katalitik performansa sahip olduğunu göstermiştir. Çalışma, %5TPA-HB'nin uygun gözenek büyüklüğü ve yüksek erişilebilir güçlü asit bölgelerinin iyi bir kombinasyonu sayesinde DPM sentezinde potansiyel uygulamalara sahip olduğunu göstermiştir.

Destekleyen Kurum

Eskişehir Teknik Üniversitesi, Bilimsel Araştırma Projeleri Komisyonu Başkanlığı

Proje Numarası

19ADP079, 20ADP151

Teşekkür

Bu çalışma Eskişehir Teknik Üniversitesi, Bilimsel Araştırma Proje Komisyonu tarafından 19ADP079 ve 20ADP151 numaralı projeler kapsamında desteklenmiştir. ICP-OES analizleri için ODTÜ Merkez Laboratuvarı'na (Ankara, Türkiye) teşekkür ederiz.

Kaynakça

  • Akyalcin, S., Akyalcin, L. & Bjørgen, M. (2019). Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous and Mesoporous Materials, 273, 256–264. doi: https://doi.org/10.1016/j.micromeso.2018.07.014
  • Almulla, F. M., Ali, S. A., Aldossary, M. R., Alnaimi, E. I., Jumah, A. bin & Garforth, A. A. (2020). Transalkylation of 1,2,4-trimethylbenzene with toluene over large pore zeolites: Role of pore structure and acidity. Applied Catalysis A: General, 608, 117886. doi: https://doi.org/10.1016/j.apcata.2020.117886
  • Atalay, B. & Gündüz, G. (2011). Isomerizaton of α-pinene over H3PW12O40 catalysts supported on natural zeolite. Chemical Engineering Journal, 168(3), 1311–1318. doi: https://doi.org/10.1016/j.cej.2011.02.037
  • Bai, G., Li, T., Yang, Y., Zhang, H., Lan, X., Li, F., Han, J., Ma, Z., Chen, Q. & Chen, G. (2012). Microwave-assisted Friedel-Crafts acylation of indole with acetic anhydride over tungstophosphoric acid modified Hβ zeolite. Catalysis Communications, 29, 114–117. doi: https://doi.org/10.1016/j.catcom.2012.09.028
  • Baroi, C. & Dalai, A. K. (2014). Esterification of free fatty acids (FFA) of Green Seed Canola (GSC) oil using H-Y zeolite supported 12-Tungstophosphoric acid (TPA). Applied Catalysis A: General, 485, 99–107. doi: https://doi.org/10.1016/j.apcata.2014.07.033
  • Bhatt, N. & Patel, A. (2011). Supported 12-tungstophosphoricacid: A recoverable solid acid catalyst for liquid phase Friedel-Crafts alkylation of phenol. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 356–362. doi: https://doi.org/10.1016/j.jtice.2010.07.017
  • Candu, N., Florea, M., Coman, S. M. & Parvulescu, V. I. (2011). Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 393(1–2), 206–214. doi: https://doi.org/10.1016/j.apcata.2010.11.044
  • Candu, N., Wuttke, S., Kemnitz, E., Coman, S. M. & Parvulescu, V. I. (2012). Replacing benzyl chloride with benzyl alcohol in heterogeneous catalytic benzylation of aromatic compounds. Pure and Applied Chemistry, 84(3), 427–437. doi: https://doi.org/10.1351/PAC-CON-11-09-34
  • Chaube, V. D. (2004). Benzylation of benzene to diphenylmethane using zeolite catalysts. Catalysis Communications, 5(6), 321–326. doi: https://doi.org/10.1016/j.catcom.2004.02.013
  • Devassy, B. M. & Halligudi, S. B. (2005). Zirconia-supported heteropoly acids: Characterization and catalytic behavior in liquid-phase veratrole benzoylation. Journal of Catalysis, 236(2), 313–323. doi: https://doi.org/10.1016/j.jcat.2005.09.016
  • Freitas, E. F., Araújo, Á. A. L., Paiva, M. F., Dias, S. C. L. & Dias, J. A. (2018). Comparative acidity of BEA and Y zeolite composites with 12-tungstophosphoric and 12-tungstosilicic acids. Molecular Catalysis, 458, 152–160. doi: https://doi.org/10.1016/j.mcat.2018.03.005
  • Freitas, E. F., Paiva, M. F., Dias, S. C. L. & Dias, J. A. (2017). Generation and characterization of catalytically active sites of hetoropolyacids on zeolite Y for liquid-phase esterification. Catalysis Today, 289, 70–77. doi: http://dx.doi.org/10.1016/j.cattod.2016.08.010
  • Jansen, J. C., Creyghton, E. J., Njo, S. L., van Koningsveld, H. & van Bekkum, H. (1997). On the remarkable behaviour of zeolite Beta in acid catalysis. Catalysis Today, 38(2), 205–212. doi: https://doi.org/10.1016/S0920-5861(97)00070-9
  • Jin, H., Ansari, M. B., Jeong, E. Y. & Park, S. E. (2012). Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. Journal of Catalysis, 291, 55–62. doi: https://doi.org/10.1016/j.jcat.2012.04.006
  • Jovic, A., Bajuk-Bogdanovic, D., Nedic Vasiljevic, B., Milojevic-Rakic, M., Krajisnik, D., Dondur, V., Popa, A., Uskokovic-Markovic, S. & Holclajtner-Antunovic, M. (2017). Synthesis and characterization of 12-phosphotungstic acid supported on BEA zeolite. Materials Chemistry and Physics, 186, 430-437. doi: http://dx.doi.org/10.1016/j.matchemphys.2016.11.015
  • Kamalakar, G., Komura, K., Kubota, Y. & Sugi, Y. (2006). Friedel-Crafts benzylation of aromatics with benzyl alcohols catalyzed by heteropoly acids supported on mesoporous silica. Journal of Chemical Technology and Biotechnology, 81(6), 981–988. doi: https://doi.org/10.1002/jctb.1488
  • Karabulut, D. & Akyalcin, S. (2021). Friedel-Crafts alkylation of benzene with benzyl alcohol over H-MCM-22. International Journal of Chemical Reactor Engineering, 19(5), 541–551. doi: https://doi.org/10.1515/ijcre-2020-0175
  • Katryniok, B., Paul, S., Capron, M., Bellière-Baca, V., Rey, P. & Dumeignil, F. (2012). Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol. ChemSusChem, 5(7), 1298–1306. doi: https://doi.org/10.1002/cssc.201100635
  • Kozhevnikov, I. V. (2007). Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical, 262(1–2), 86–92. doi: https://doi.org/10.1016/j.molcata.2006.08.072
  • Kuai, L., Wang, M., Meng, X., Shi, L. & Liu, N. (2022). W Modified HY Zeolite as Catalyst for Alkylation of Aromatic. Catalysis Letters, 152(8), 2480–2490. doi: https://doi.org/10.1007/s10562-021-03820-4
  • Kurnia, I., Karnjanakom, S., Bayu, A., Yoshida, A., Rizkiana, J., Prakoso, T., Abudula, A. & Guan, G. (2017). In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites. Fuel Processing Technology, 167, 730–737. doi: https://doi.org/10.1016/j.fuproc.2017.08.026
  • Leng, K., Sun, S., Wang, B., Sun, L., Xu, W. & Sun, Y. (2012). Benzylation of benzene with benzyl chloride on iron-containing mesoporous mordenite. Catalysis Communications, 28, 64–68. doi: https://doi.org/10.1016/j.catcom.2012.08.016
  • Li, J., Zhou, Y., Mao, D., Chen, G., Wang, X., Yang, X., Wang, M., Peng, L. & Wang, J. (2014). Heteropolyanion-based ionic liquid-functionalized mesoporous copolymer catalyst for Friedel-Crafts benzylation of arenes with benzyl alcohol. Chemical Engineering Journal, 254, 54–62. doi: https://doi.org/10.1016/j.cej.2014.05.124
  • Narkhede, N. & Patel, A. (2013). Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite hβ. Industrial and Engineering Chemistry Research, 52(38), 13637–13644. doi: https://doi.org/10.1021/ie402230v
  • Pithadia, D., Patel, A. & Hatiya, V. (2022). 12-Tungstophosphoric acid anchored to MCM-22, as a novel sustainable catalyst for the synthesis of potential biodiesel blend, levulinate ester. Renewable Energy, 187, 933–943. doi: https://doi.org/10.1016/j.renene.2022.01.106
  • Sakthivel, A., Komura, K. & Sugi, Y. (2008). MCM-48 supported tungstophosphoric acid: An efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 47(8), 2538–2544. doi: https://doi.org/10.1021/ie071314z
  • Satam, J. R. & Jayaram, R. V. (2008). Liquid phase Friedel-Crafts benzylation of aromatics on a polymer-supported 12-tungstophosphoric acid catalyst. Catalysis Communications, 9(9), 1937–1940. doi: https://doi.org/10.1016/j.catcom.2008.03.018
  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. doi: https://doi.org/10.1351/pac198557040603
  • Singh, A. P., Bhattacharya, D. & Sharma, S. (1995). Benzoylation of toluene with benzoyl chloride over zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 102(3), 139–145. doi: https://doi.org/10.1016/1381-1169(95)00104-2
  • Sun, Y. & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1–2), 11–16. doi: https://doi.org/10.1016/j.apcata.2007.08.015
  • Viswanadham, B., Nagaraju, N., Rohitha, C. N., Vishwanathan, V. & Chary, K. V. R. (2018). Synthesis, Characterization and Catalytic Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Supported Y-Zeolite Catalysts. Catalysis Letters, 148(1), 397–406. doi: https://doi.org/10.1007/s10562-017-2236-9
  • Viswanadham, B., Pavankumar, V. & Chary, K. V. R. (2014). Vapor phase dehydration of glycerol to acrolein over phosphotungstic acid catalyst supported on niobia. Catalysis Letters, 144(4), 744–755. doi: https://doi.org/10.1007/s10562-014-1204-x
  • Wang, Y., Sun, Y., Lancelot, C., Lamonier, C., Morin, J. C., Revel, B., Delevoye, L. & Rives, A. (2015). Effect of post treatment on the local structure of hierarchical Beta prepared by desilication and the catalytic performance in Friedel-Crafts alkylation. Microporous and Mesoporous Materials, 206, 42–51. doi: https://doi.org/10.1016/j.micromeso.2014.12.017
  • Wang, Y., Song, H. & Sun, X. (2016). Alkylation of toluene with tert-butyl alcohol over HPW-modified Hβ zeolite. Cuihua Xuebao/Chinese Journal of Catalysis, 37(12), 2134–2141. doi: https://doi.org/10.1016/S1872-2067(16)62587-1
  • Wang, Z. & Liu, L. (2021). Mesoporous silica supported phosphotungstic acid catalyst for glycerol dehydration to acrolein. Catalysis Today, 376, 55–64. doi: https://doi.org/10.1016/j.cattod.2020.08.007
  • Wu, Y., Ye, X., Yang, X., Wang, X., Chu, W. & Hu, Y. (1996). Heterogenization of Heteropolyacids: A General Discussion on the Preparation of Supported Acid Catalysts. Industrial and Engineering Chemistry Research, 35(8), 2546–2560. doi: https://doi.org/10.1021/ie950473s
  • Yin, D., Li, C., Tao, L., Yu, N., Hu, S. & Yin, D. (2006). Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. Journal of Molecular Catalysis A: Chemical, 245(1–2), 260–265. doi: https://doi.org/10.1016/j.molcata.2005.10.010
  • Zeng, X., Wang, Z., Ding, J., Wang, L., Jiang, Y., Stampfl, C., Hunger, M. & Huang, J. (2019). Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity. Journal of Catalysis, 380, 9–20. doi: https://doi.org/10.1016/j.jcat.2019.09.035
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimyasal Reaksiyon Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Sema Akyalçın 0000-0001-8269-2968

Levent Akyalçın 0000-0001-6779-1597

Fatma Hande Keskin 0009-0003-0813-6850

Çağan Satır 0009-0003-8678-3885

Proje Numarası 19ADP079, 20ADP151
Erken Görünüm Tarihi 12 Aralık 2024
Yayımlanma Tarihi 22 Aralık 2024
Gönderilme Tarihi 3 Nisan 2024
Kabul Tarihi 19 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 32 Sayı: 3

Kaynak Göster

APA Akyalçın, S., Akyalçın, L., Keskin, F. H., Satır, Ç. (2024). TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(3), 1556-1564. https://doi.org/10.31796/ogummf.1464296
AMA Akyalçın S, Akyalçın L, Keskin FH, Satır Ç. TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ. ESOGÜ Müh Mim Fak Derg. Aralık 2024;32(3):1556-1564. doi:10.31796/ogummf.1464296
Chicago Akyalçın, Sema, Levent Akyalçın, Fatma Hande Keskin, ve Çağan Satır. “TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 3 (Aralık 2024): 1556-64. https://doi.org/10.31796/ogummf.1464296.
EndNote Akyalçın S, Akyalçın L, Keskin FH, Satır Ç (01 Aralık 2024) TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 3 1556–1564.
IEEE S. Akyalçın, L. Akyalçın, F. H. Keskin, ve Ç. Satır, “TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 3, ss. 1556–1564, 2024, doi: 10.31796/ogummf.1464296.
ISNAD Akyalçın, Sema vd. “TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/3 (Aralık 2024), 1556-1564. https://doi.org/10.31796/ogummf.1464296.
JAMA Akyalçın S, Akyalçın L, Keskin FH, Satır Ç. TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1556–1564.
MLA Akyalçın, Sema vd. “TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 3, 2024, ss. 1556-64, doi:10.31796/ogummf.1464296.
Vancouver Akyalçın S, Akyalçın L, Keskin FH, Satır Ç. TUNGSTOFOSFORİK ASİTLE MODİFİYE H-BETA ZEOLİT KATALİZÖRLER VARLIĞINDA DİFENİLMETAN SENTEZİ. ESOGÜ Müh Mim Fak Derg. 2024;32(3):1556-64.

20873 13565 13566 15461 13568  14913