Araştırma Makalesi
BibTex RIS Kaynak Göster

MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING

Yıl 2025, Cilt: 33 Sayı: 2, 1809 - 1818, 22.08.2025
https://doi.org/10.31796/ogummf.1547071

Öz

Plasma Transferred Arc (PTA) coatings are widely used for the surface modification of metals due to their ability to achieve high coating thickness, low thermal stress, and high energy density. This technique is commonly applied to glass and ceramic molds, automotive valves, petrochemical vanes, lamination cylinders, as well as plastic extrusion molds and screws. In plastic injection machine screws, high hardness and wear resistance are essential for durability. To achieve these properties, the steels used in plastic injection screws are first hardfaced on the thread crests using the PTA coating method and then nitrided. In this study, 1.8550 and 1.8519 steels, commonly used in plastic injection screw manufacturing, were coated with two different powders: FeCrBSi with a nickel (Ni) balance, either with or without tungsten (W) addition. The tribological properties of the coated samples were evaluated through ball-on-disc wear tests. The samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and optical microscopy. The depth and width of wear tracks were measured using a profilometer. Results indicated that increasing W content leads to a higher coefficient of friction, but the best wear performance was observed with W-containing coatings. The optimal combination was found to be the 1.8550 steel substrate paired with the FeCrBSi-W coating, which demonstrated a 5% higher coefficient of friction but a 47% lower specific wear rate compared to the non-W coating.

Kaynakça

  • Appiah, A. N. S., Oktawian, B., Marcin, Ż., Artur, C., David K. S., & Marcin A. (2022). Hardfacing of Mild Steel with Wear-Resistant Ni-Based Powders Containing Tungsten Carbide Particles Using Powder Plasma Transferred Arc Welding Technology. Materials Science-Poland, 40(3), 42–63. doi: 10.2478/msp-2022-0033.
  • Appiah, A. N. S., Bernard, W., Krzysztof, M., Łukasz, R., Oktawian, B., Gilmar, F. B., Artur, C., & Marcin, A. (2024). Microstructure and Performance of NiCrBSi Coatings Prepared by Modulated Arc Currents Using Powder Plasma Transferred Arc Welding Technology. Applied Surface Science, 648, 159065. doi: 10.1016/j.apsusc.2023.159065.
  • ArunKumar, V., Prakash, N., & Deenadayalan, K. (2023). Comparison between the Spherical and Angular Type WC Particles Reinforced in Nickel-Based Matrix Deposited Using Plasma Transferred Arc Welding Process. Materials Today: Proceedings, S2214785323009082. doi: 10.1016/j.matpr.2023.02.344.
  • ASM International, Kathleen Mills, & ASM International, eds. (2000). Metallography and Microstructures. [10. ed.], 9. print. Materials Park, Ohio: ASM International.
  • Berins, Michael L. (2012). SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. Springer Science & Business Media, Springer New York, NY.
  • Chen, K., & Hung-Mao, L. (2024). Effects of Niobium Carbide Additions on Ni-Based Superalloys: A Study on Microstructures and Cutting-Wear Characteristics through Plasma-Transferred-Arc-Assisted Deposition. Coatings, 14(2), 167. doi: 10.3390/coatings14020167.
  • Das, A. K., & Ravi, K. (2024). Investigation on Wear Behaviour of TiC/Co/Y2O3 Metal Matrix Composite Coating Developed on AZ91D Mg Alloy by Plasma Transferred Arc Cladding Process. Materials Letters, 355, 135457. doi: 10.1016/j.matlet.2023.135457.
  • Ferreira, L. S., Karin, G, Adriano, S., Luciano, S. F., Karin, G., & Adriano, S. (2015). Microstructure and Properties of Nickel-Based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates. Materials Research, 18(1), 212–21. doi: 10.1590/1516-1439.332914.
  • Guo, X., Peng, Z., Hui, L., & Mengyu, W. (2023). Design and Performance of Nitrogen-Alloyed Iron-Based Coating for Enhancing Galling Resistance by Plasma Transferred Arc Welding. Materials Letters, 346, 134535. doi: 10.1016/j.matlet.2023.134535.
  • Hemmati, I., Rao, J. C., Ocelík, V., & Hosson, J. M. De. (2013). Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings. Microscopy and Microanalysis, 19(1), 120–31. doi: 10.1017/S1431927612013839.
  • Hirpara, K. P., Janak, B. V., Mrunalkumar, D. C., & Milind, A. S. (2024). A Comprehensive Review on Recent Developments in Materials and Technological Parameters for Plasma Transferred Arc Hardfacing Process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(3), 1507–19. doi: 10.1177/09544089231153363.
  • Kato, K. (2000). Wear in Relation to Friction — a Review. Wear, 241(2), 151–57. doi: 10.1016/S0043-1648(00)00382-3.
  • Kesavan, D., & Kamaraj, M. (2010). The Microstructure and High Temperature Wear Performance of a Nickel Base Hardfaced Coating. Surface and Coatings Technology, 204(24), 4034–43. doi: 10.1016/j.surfcoat.2010.05.022.
  • Kishore, K., Nikita, J., Anand, P., & Kanwer, S. A. (2023). Through-Thickness Microstructure and Wear Resistance of Plasma Transferred Arc Stellite 6 Cladding: Effect of Substrate. CIRP Journal of Manufacturing Science and Technology, 42, 24–35. doi: 10.1016/j.cirpj.2023.01.014.
  • Li, S., Xuanpu, D., Ali, C., Yutao, P., Xun, Z., Ying, C., Jeff, Th. M. H., & Huatang, C. (2023). In-Situ Micromechanical Analysis of a High-Vanadium High-Speed Steel Coating Made with Additive Manufacturing. Materials Science and Engineering: A, 870, 144850. doi: 10.1016/j.msea.2023.144850.
  • López, X. A., Muñoz-Arroyo, R., Hernández-García, F. A., Alvarez-Vera, M., Mtz-Enriquez, A. I., Díaz-Guillen, J. C., Isidro, G. F., Betancourt-Cantera, J. A., & Hdz-García, H. M. (2023). Processing of Co-Base/C-Nanotubes Compound Coatings on D2 Steel Using Plasma Transferred by Arc: Tribological and Mechanical Performance. Surface and Coatings Technology, 461, 129458. doi: 10.1016/j.surfcoat.2023.129458.
  • Lu, S., & Oh-Yang, K. (2002). Microstructure and Bonding Strength of WC Reinforced Ni-Base Alloy Brazed Composite Coating. Surface and Coatings Technology, 153(1), 40–48. doi: 10.1016/S0257-8972(01)01555-9.
  • Maros, M. B., & Shiraz, A. S. (2022). Tribological Study of Simply and Duplex-Coated CrN-X42Cr13 Tribosystems under Dry Sliding Wear and Progressive Loading Scratching. Ceramics, 5(4), 1084–1101. doi: 10.3390/ceramics5040077.
  • Mennig, G., & Klaus, S. (2013). Materials for Mold Making. Pp. 421–70 in Mold-making Handbook (Third Edition). Hanser.
  • Öteyaka, M. Ö., Arslan, A. E., & Çakir, F. H. (2021). Wear and Corrosion Characterisation of AISI 1030, AISI 1040 and AISI 1050 Steel Coated with Shielded Metal Arc Welding (SMAW) and Plasma Transfer Arc (PTA) Methods. Sādhanā, 46(3), 134. doi: 10.1007/s12046-021-01661-w.
  • Silva, L. J., & D’Oliveira, A. S. C. M. (2017). NiCrSiBC Alloy: Microstructure and Hardness of Coatings Processed by Arc and Laser. Welding International, 31(1), 1–8. doi: 10.1080/09507116.2016.1218608.
  • Sun, H., Sugui, T., Ning, T., Huichen, Y., & Xianlin, M. (2014). Microstructure Heterogeneity and Creep Damage of DZ125 Nickel-Based Superalloy. Progress in Natural Science: Materials International, 24(3), 266–73. doi: 10.1016/j.pnsc.2014.05.004.
  • Takaki, S., Tadashi, F., & Youichi, T. (1990). Effect of Si and Al Additions on the Low Temperature Toughness and Fracture Mode of Fe-27Mn Alloys. ISIJ International, 30(8), 632–38. doi: 10.2355/isijinternational.30.632.
  • Yang, G., Chao-peng, H., Wen-ming, S., Jian, L., Jin-jun, L., Ying, M., & Yuan, H. (2016). Microstructure Characteristics of Ni/WC Composite Cladding Coatings. International Journal of Minerals, Metallurgy, and Materials, 23(2), 184–92. doi: 10.1007/s12613-016-1226-z.
  • Zhou, Y., Rui, L., Heng, L., Yu, Y., Li, Z., Wuxi, Z., Wei, Y., & Chaofang, D. (2023). Influence of Tungsten Carbide Raw Materials to Microstructure and Wear Performance on PTA Hard-Facing Materials with Its Micro-Mechanism Analysis. Surface and Coatings Technology, 454, 129200. doi: 10.1016/j.surfcoat.2022.129200.

PLAZMA TRANSFER ARK KAYNAĞI İLE NİTRÜRLENMİŞ ÇELİKLER ÜZERİNE KAPLANMIŞ NİKEL ESASLI SERT DOLGU KAPLAMALARININ MİKROYAPISAL VE TRİBOLOJİK ÖZELLİKLER

Yıl 2025, Cilt: 33 Sayı: 2, 1809 - 1818, 22.08.2025
https://doi.org/10.31796/ogummf.1547071

Öz

Plazma Transfer Ark (PTA) kaplamaları, yüksek kaplama kalınlığı, düşük termal gerilim ve yüksek enerji yoğunluğu sağladıkları için metallerin yüzey modifikasyonunda yaygın olarak kullanılmaktadır. Bu teknik, cam ve seramik kalıplar, otomotiv valfleri, petrokimyasal kanatlar, lamine silindirler ve plastik ekstrüzyon kalıpları ve vidalarına uygulanmaktadır. Plastik enjeksiyon makinesi vidalarında yüksek sertlik ve aşınma direnci, dayanıklılık için kritik öneme sahiptir. Bu özelliklerin elde edilmesi için plastik enjeksiyon vidalarında kullanılan çeliklerin diş tepeleri önce PTA yöntemiyle sert dolgu kaplama ile kaplanır, ardından nitrürleme işlemi uygulanır. Bu çalışmada, plastik enjeksiyon vidaları üretiminde kullanılan 1.8550 ve 1.8519 çelikleri, nikel (Ni) esaslı ve tungsten (W) katkılı veya katkısız FeCrBSi tozları ile kaplanmıştır. Kaplanmış numunelerin tribolojik özellikleri bilye-disk aşınma testleriyle değerlendirilmiştir. Numuneler, X-ışını difraksiyonu (XRD), taramalı elektron mikroskobu (SEM), enerji dağılımlı spektroskopi (EDS) ve optik mikroskop analizleri ile karakterize edilmiştir. Aşınma izlerinin derinliği ve genişliği bir profilometre kullanılarak ölçülmüştür.Sonuçlar, artan W içeriğinin sürtünme katsayısını artırdığını, ancak en iyi aşınma performansının W içeren kaplamalarla elde edildiğini göstermiştir. En uygun kombinasyon, %5 daha yüksek sürtünme katsayısına rağmen %47 daha düşük spesifik aşınma oranı gösteren FeCrBSi-W kaplamalı 1.8550 çelik altlık olmuştur.

Kaynakça

  • Appiah, A. N. S., Oktawian, B., Marcin, Ż., Artur, C., David K. S., & Marcin A. (2022). Hardfacing of Mild Steel with Wear-Resistant Ni-Based Powders Containing Tungsten Carbide Particles Using Powder Plasma Transferred Arc Welding Technology. Materials Science-Poland, 40(3), 42–63. doi: 10.2478/msp-2022-0033.
  • Appiah, A. N. S., Bernard, W., Krzysztof, M., Łukasz, R., Oktawian, B., Gilmar, F. B., Artur, C., & Marcin, A. (2024). Microstructure and Performance of NiCrBSi Coatings Prepared by Modulated Arc Currents Using Powder Plasma Transferred Arc Welding Technology. Applied Surface Science, 648, 159065. doi: 10.1016/j.apsusc.2023.159065.
  • ArunKumar, V., Prakash, N., & Deenadayalan, K. (2023). Comparison between the Spherical and Angular Type WC Particles Reinforced in Nickel-Based Matrix Deposited Using Plasma Transferred Arc Welding Process. Materials Today: Proceedings, S2214785323009082. doi: 10.1016/j.matpr.2023.02.344.
  • ASM International, Kathleen Mills, & ASM International, eds. (2000). Metallography and Microstructures. [10. ed.], 9. print. Materials Park, Ohio: ASM International.
  • Berins, Michael L. (2012). SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. Springer Science & Business Media, Springer New York, NY.
  • Chen, K., & Hung-Mao, L. (2024). Effects of Niobium Carbide Additions on Ni-Based Superalloys: A Study on Microstructures and Cutting-Wear Characteristics through Plasma-Transferred-Arc-Assisted Deposition. Coatings, 14(2), 167. doi: 10.3390/coatings14020167.
  • Das, A. K., & Ravi, K. (2024). Investigation on Wear Behaviour of TiC/Co/Y2O3 Metal Matrix Composite Coating Developed on AZ91D Mg Alloy by Plasma Transferred Arc Cladding Process. Materials Letters, 355, 135457. doi: 10.1016/j.matlet.2023.135457.
  • Ferreira, L. S., Karin, G, Adriano, S., Luciano, S. F., Karin, G., & Adriano, S. (2015). Microstructure and Properties of Nickel-Based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates. Materials Research, 18(1), 212–21. doi: 10.1590/1516-1439.332914.
  • Guo, X., Peng, Z., Hui, L., & Mengyu, W. (2023). Design and Performance of Nitrogen-Alloyed Iron-Based Coating for Enhancing Galling Resistance by Plasma Transferred Arc Welding. Materials Letters, 346, 134535. doi: 10.1016/j.matlet.2023.134535.
  • Hemmati, I., Rao, J. C., Ocelík, V., & Hosson, J. M. De. (2013). Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings. Microscopy and Microanalysis, 19(1), 120–31. doi: 10.1017/S1431927612013839.
  • Hirpara, K. P., Janak, B. V., Mrunalkumar, D. C., & Milind, A. S. (2024). A Comprehensive Review on Recent Developments in Materials and Technological Parameters for Plasma Transferred Arc Hardfacing Process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(3), 1507–19. doi: 10.1177/09544089231153363.
  • Kato, K. (2000). Wear in Relation to Friction — a Review. Wear, 241(2), 151–57. doi: 10.1016/S0043-1648(00)00382-3.
  • Kesavan, D., & Kamaraj, M. (2010). The Microstructure and High Temperature Wear Performance of a Nickel Base Hardfaced Coating. Surface and Coatings Technology, 204(24), 4034–43. doi: 10.1016/j.surfcoat.2010.05.022.
  • Kishore, K., Nikita, J., Anand, P., & Kanwer, S. A. (2023). Through-Thickness Microstructure and Wear Resistance of Plasma Transferred Arc Stellite 6 Cladding: Effect of Substrate. CIRP Journal of Manufacturing Science and Technology, 42, 24–35. doi: 10.1016/j.cirpj.2023.01.014.
  • Li, S., Xuanpu, D., Ali, C., Yutao, P., Xun, Z., Ying, C., Jeff, Th. M. H., & Huatang, C. (2023). In-Situ Micromechanical Analysis of a High-Vanadium High-Speed Steel Coating Made with Additive Manufacturing. Materials Science and Engineering: A, 870, 144850. doi: 10.1016/j.msea.2023.144850.
  • López, X. A., Muñoz-Arroyo, R., Hernández-García, F. A., Alvarez-Vera, M., Mtz-Enriquez, A. I., Díaz-Guillen, J. C., Isidro, G. F., Betancourt-Cantera, J. A., & Hdz-García, H. M. (2023). Processing of Co-Base/C-Nanotubes Compound Coatings on D2 Steel Using Plasma Transferred by Arc: Tribological and Mechanical Performance. Surface and Coatings Technology, 461, 129458. doi: 10.1016/j.surfcoat.2023.129458.
  • Lu, S., & Oh-Yang, K. (2002). Microstructure and Bonding Strength of WC Reinforced Ni-Base Alloy Brazed Composite Coating. Surface and Coatings Technology, 153(1), 40–48. doi: 10.1016/S0257-8972(01)01555-9.
  • Maros, M. B., & Shiraz, A. S. (2022). Tribological Study of Simply and Duplex-Coated CrN-X42Cr13 Tribosystems under Dry Sliding Wear and Progressive Loading Scratching. Ceramics, 5(4), 1084–1101. doi: 10.3390/ceramics5040077.
  • Mennig, G., & Klaus, S. (2013). Materials for Mold Making. Pp. 421–70 in Mold-making Handbook (Third Edition). Hanser.
  • Öteyaka, M. Ö., Arslan, A. E., & Çakir, F. H. (2021). Wear and Corrosion Characterisation of AISI 1030, AISI 1040 and AISI 1050 Steel Coated with Shielded Metal Arc Welding (SMAW) and Plasma Transfer Arc (PTA) Methods. Sādhanā, 46(3), 134. doi: 10.1007/s12046-021-01661-w.
  • Silva, L. J., & D’Oliveira, A. S. C. M. (2017). NiCrSiBC Alloy: Microstructure and Hardness of Coatings Processed by Arc and Laser. Welding International, 31(1), 1–8. doi: 10.1080/09507116.2016.1218608.
  • Sun, H., Sugui, T., Ning, T., Huichen, Y., & Xianlin, M. (2014). Microstructure Heterogeneity and Creep Damage of DZ125 Nickel-Based Superalloy. Progress in Natural Science: Materials International, 24(3), 266–73. doi: 10.1016/j.pnsc.2014.05.004.
  • Takaki, S., Tadashi, F., & Youichi, T. (1990). Effect of Si and Al Additions on the Low Temperature Toughness and Fracture Mode of Fe-27Mn Alloys. ISIJ International, 30(8), 632–38. doi: 10.2355/isijinternational.30.632.
  • Yang, G., Chao-peng, H., Wen-ming, S., Jian, L., Jin-jun, L., Ying, M., & Yuan, H. (2016). Microstructure Characteristics of Ni/WC Composite Cladding Coatings. International Journal of Minerals, Metallurgy, and Materials, 23(2), 184–92. doi: 10.1007/s12613-016-1226-z.
  • Zhou, Y., Rui, L., Heng, L., Yu, Y., Li, Z., Wuxi, Z., Wei, Y., & Chaofang, D. (2023). Influence of Tungsten Carbide Raw Materials to Microstructure and Wear Performance on PTA Hard-Facing Materials with Its Micro-Mechanism Analysis. Surface and Coatings Technology, 454, 129200. doi: 10.1016/j.surfcoat.2022.129200.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makaleleri
Yazarlar

Gökçe Mehmet Ay 0000-0001-8354-5070

Fatih Hayati Çakır 0000-0002-0873-5920

Abdullah Sert 0000-0002-2406-0409

Erken Görünüm Tarihi 15 Ağustos 2025
Yayımlanma Tarihi 22 Ağustos 2025
Gönderilme Tarihi 13 Eylül 2024
Kabul Tarihi 21 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 2

Kaynak Göster

APA Ay, G. M., Çakır, F. H., & Sert, A. (2025). MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(2), 1809-1818. https://doi.org/10.31796/ogummf.1547071
AMA Ay GM, Çakır FH, Sert A. MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING. ESOGÜ Müh Mim Fak Derg. Ağustos 2025;33(2):1809-1818. doi:10.31796/ogummf.1547071
Chicago Ay, Gökçe Mehmet, Fatih Hayati Çakır, ve Abdullah Sert. “MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 2 (Ağustos 2025): 1809-18. https://doi.org/10.31796/ogummf.1547071.
EndNote Ay GM, Çakır FH, Sert A (01 Ağustos 2025) MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 2 1809–1818.
IEEE G. M. Ay, F. H. Çakır, ve A. Sert, “MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 2, ss. 1809–1818, 2025, doi: 10.31796/ogummf.1547071.
ISNAD Ay, Gökçe Mehmet vd. “MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/2 (Ağustos2025), 1809-1818. https://doi.org/10.31796/ogummf.1547071.
JAMA Ay GM, Çakır FH, Sert A. MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING. ESOGÜ Müh Mim Fak Derg. 2025;33:1809–1818.
MLA Ay, Gökçe Mehmet vd. “MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 2, 2025, ss. 1809-18, doi:10.31796/ogummf.1547071.
Vancouver Ay GM, Çakır FH, Sert A. MICROSTRUCTURAL AND TRIBOLOGICAL PROPERTIES OF NICKEL-BASED HARDFACING COATINGS APPLIED ON NITRIDING STEELS BY PLASMA TRANSFERRED ARC WELDING. ESOGÜ Müh Mim Fak Derg. 2025;33(2):1809-18.

20873      13565         15461