Araştırma Makalesi
BibTex RIS Kaynak Göster

CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES

Yıl 2025, Cilt: 33 Sayı: 2, 1882 - 1892, 22.08.2025
https://doi.org/10.31796/ogummf.1591951

Öz

Liver diseases pose a significant global health challenge due to their impact on metabolic function and the difficulty of early detection. Traditional diagnostic methods such as liver biopsy have limitations due to their invasive nature and high costs. This research examines the application of advanced machine learning techniques such as Gradient Boosting, AdaBoost, XGBoost and CatBoost for classification of liver diseases using a publicly available dataset of 1700 clinical records. Statistical analyses identified key predictors such as age, body mass index (BMI), lifestyle factors, and liver function tests, which were used to train and evaluate the models. The performance of the models was evaluated using metrics such as accuracy, precision, recall and AUC-ROC. The CatBoost model showed the highest performance with an accuracy of 93.82%, while also producing the most consistent results with precision (91.97%), recall (96.62%), F1 score (94.25%) and AUC-ROC (95.64%). These results highlight the potential of machine learning-based approaches to improve diagnostic accuracy and reduce reliance on invasive procedures. The proposed framework can contribute to improving patient outcomes and optimizing healthcare resources by providing a foundation for real-time clinical decision support systems.

Kaynakça

  • An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges. Sensors, 23(9), 4178. https://www.mdpi.com/1424-8220/23/9/4178
  • Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine Learning in Healthcare: Operational and Financial Impact. In V. Babich, J. R. Birge, & G. Hilary (Eds.), Innovative Technology at the Interface of Finance and Operations: Volume I (pp. 153-174). Springer International Publishing. https://doi.org/10.1007/978-3-030-75729-8_5
  • Aouragh, A. A., & Bahaj, M. (2023, 16-22 Dec. 2023). Feature Selection and Dimensionality Reduction for Unbalanced Liver Disease Classification with Optimized Machine Learning Algorithms. 2023 7th IEEE Congress on Information Science and Technology (CiSt),
  • Ayyadevara, V. K. (2018). Gradient Boosting Machine. In Pro Machine Learning Algorithms : A Hands-On Approach to Implementing Algorithms in Python and R (pp. 117-134). Apress. https://doi.org/10.1007/978-1-4842-3564-5_6
  • Bennett, M., Hayes, K., Kleczyk, E. J., & Mehta, R. (2022). Similarities and differences between machine learning and traditional advanced statistical modeling in healthcare analytics. arXiv preprint arXiv:2201.02469.
  • Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
  • Biau, G., Cadre, B., & Rouvière, L. (2019). Accelerated gradient boosting. Machine Learning, 108(6), 971-992. https://doi.org/10.1007/s10994-019-05787-1
  • Bozuyla, M. (2021). AdaBoost Ensemble Learning on top of Naive Bayes Algorithm to Discriminate Fake and Genuine News from Social Media [Naive Bayes Algoritmasının AdaBoost Topluluk Öğrenme Modeli ile Sosyal Medyada Sahte ve Gerçek Haberlerinin Ayırt Edilmesi]. European Journal of Science and Technology(28), 459-462. https://doi.org/10.31590/ejosat.1005577
  • Casotti, V., & D’Antiga, L. (2019). Basic Principles of Liver Physiology. In L. D'Antiga (Ed.), Pediatric Hepatology and Liver Transplantation (pp. 21-39). Springer International Publishing. https://doi.org/10.1007/978-3-319-96400-3_2
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
  • Decharatanachart, P., Chaiteerakij, R., Tiyarattanachai, T., & Treeprasertsuk, S. (2021). Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterology, 21(1), 10. https://doi.org/10.1186/s12876-020-01585-5
  • El Kharoua, R. (2024). Predict Liver Disease: 1700 Records Dataset. https://www.kaggle.com/datasets/rabieelkharoua/predict-liver-disease-1700-records-dataset
  • Ganie, S. M., Dutta Pramanik, P. K., & Zhao, Z. (2024). Improved liver disease prediction from clinical data through an evaluation of ensemble learning approaches. BMC Medical Informatics and Decision Making, 24(1), 160. https://doi.org/10.1186/s12911-024-02550-y
  • Ghosh, S., Chatterjee, A., & Chatterjee, D. (2021). An Improved Load Feature Extraction Technique for Smart Homes Using Fuzzy-Based NILM. IEEE Transactions on Instrumentation and Measurement, 70, 1-9. https://doi.org/10.1109/TIM.2021.3095093
  • Hidayat, A. (2024). Predictive Modelling of Liver Disease Using Biochemical Markers and K-Nearest Neighbors Algorithm. International Journal of Artificial Intelligence in Medical Issues, 2(2), 104-114.
  • Hinojosa Lee, M. C., Braet, J., & Springael, J. (2024). Performance Metrics for Multilabel Emotion Classification: Comparing Micro, Macro, and Weighted F1-Scores. Applied Sciences, 14(21), 9863. https://www.mdpi.com/2076-3417/14/21/9863
  • Hornyák, O., & Iantovics, L. B. (2023). AdaBoost Algorithm Could Lead to Weak Results for Data with Certain Characteristics. Mathematics, 11(8), 1801. https://www.mdpi.com/2227-7390/11/8/1801
  • Jovović, I., Grebović, M., Pokvić, L. G., Popović, T., & Čakić, S. (2024). Liver Diseases Classification Using Machine Learning Algorithms. In A. Badnjević & L. Gurbeta Pokvić, MEDICON’23 and CMBEBIH’23 Cham.
  • Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput, 14(7), 8459-8486. https://doi.org/10.1007/s12652-021-03612-z
  • Luo, J., Wei, Z., Man, J., & Xu, S. (2023). TRBoost: a generic gradient boosting machine based on trust-region method. Applied Intelligence, 53(22), 27876-27891. https://doi.org/10.1007/s10489-023-05000-w
  • Makkena, K. R., & Natarajan, K. (2023). Classification Algorithms for Liver Epidemic Identification. EAI Endorsed Transactions on Pervasive Health and Technology, 9. https://doi.org/10.4108/eetpht.9.4379
  • Mathur, S., Karodi, P., & Dhanare, R. (2024, 13-14 March 2024). Fatty Liver Disease Prediction Through Machine Learning. 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL),
  • Mohamed, S., Ezzat, R., Ghorab, S., Bhatnagar, R., & Shams, M. Y. (2023, 1-3 Nov. 2023). Liver Disease Identification Based on Machine Learning Algorithms. 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS),
  • Pei, X., Zuo, K., Li, Y., & Pang, Z. (2023). A Review of the Application of Multi-modal Deep Learning in Medicine: Bibliometrics and Future Directions. International Journal of Computational Intelligence Systems, 16(1), 44. https://doi.org/10.1007/s44196-023-00225-6
  • Pilankar, A., & Shyamala, L. (2024, 5-7 June 2024). Liver disease Prediction using Ensemble Learning. 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC),
  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31.
  • Raj, H., N, G., Kodipalli, A., & Rao, T. (2024, 28-29 June 2024). Prediction of Chronic Liver Disease Using Machine Learning Algorithms and Interpretation with SHAP Kernels. 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS),
  • Rewicki, F., Denzler, J., & Niebling, J. (2023). Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series. Applied Sciences, 13(3), 1778. https://www.mdpi.com/2076-3417/13/3/1778
  • Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
  • Schapire, R. E. (2013). Explaining AdaBoost. In B. Schölkopf, Z. Luo, & V. Vovk (Eds.), Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik (pp. 37-52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_5
  • Verbakel, J. Y., Steyerberg, E. W., Uno, H., De Cock, B., Wynants, L., Collins, G. S., & Van Calster, B. (2020). ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. Journal of Clinical Epidemiology, 126, 207-216. https://doi.org/10.1016/j.jclinepi.2020.01.028
  • Yadav, H. S., & Singhal, R. K. (2023, 3-5 March 2023). Classification and Prediction of Liver Disease Diagnosis Using Machine Learning Algorithms. 2023 2nd International Conference for Innovation in Technology (INOCON),

BOOSTING MAKİNE ÖĞRENME YAKLAŞIMLARI İLE KARACİĞER HASTALIKLARININ SINIFLANDIRILMASI

Yıl 2025, Cilt: 33 Sayı: 2, 1882 - 1892, 22.08.2025
https://doi.org/10.31796/ogummf.1591951

Öz

Karaciğer hastalıkları, metabolik fonksiyonlar üzerindeki etkileri ve erken teşhis zorlukları nedeniyle önemli bir küresel sağlık sorunu oluşturmaktadır. Karaciğer biyopsisi gibi geleneksel tanı yöntemleri, invaziv yapıları ve yüksek maliyetleri nedeniyle sınırlamalar taşımaktadır. Bu araştırma, 1.700 klinik kayıttan oluşan kamuya açık bir veri kümesi kullanarak karaciğer hastalıklarının sınıflandırılması için Gradient Boosting, AdaBoost, XGBoost ve CatBoost gibi gelişmiş makine öğrenmesi tekniklerinin uygulanmasını incelemektedir. İstatistiksel analizler, modelleri eğitmek ve değerlendirmek için kullanılan yaş, vücut kitle endeksi, yaşam tarzı faktörleri ve karaciğer fonksiyon testleri gibi temel belirleyicileri ortaya koymuştur. Modellerin performansı, doğruluk, kesinlik, duyarlılık ve AUC-ROC gibi metrikler kullanılarak değerlendirilmiştir. CatBoost modeli, %93,82 doğruluk oranı ile en yüksek performansı göstermiş, aynı zamanda kesinlik (%91,97), duyarlılık (%96,62), F1 skoru (%94,25) ve AUC-ROC (%95,64) değerleriyle en istikrarlı sonuçları üretmiştir. Bu sonuçlar, makine öğrenmesi tabanlı yaklaşımların tanı doğruluğunu artırma ve invaziv prosedürlere olan bağımlılığı azaltma potansiyelini vurgulamaktadır. Önerilen çerçeve, gerçek zamanlı klinik karar destek sistemleri için bir temel oluşturarak hasta sonuçlarının iyileştirilmesine ve sağlık hizmetleri kaynaklarının optimizasyonuna katkı sağlayabilir.

Kaynakça

  • An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges. Sensors, 23(9), 4178. https://www.mdpi.com/1424-8220/23/9/4178
  • Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine Learning in Healthcare: Operational and Financial Impact. In V. Babich, J. R. Birge, & G. Hilary (Eds.), Innovative Technology at the Interface of Finance and Operations: Volume I (pp. 153-174). Springer International Publishing. https://doi.org/10.1007/978-3-030-75729-8_5
  • Aouragh, A. A., & Bahaj, M. (2023, 16-22 Dec. 2023). Feature Selection and Dimensionality Reduction for Unbalanced Liver Disease Classification with Optimized Machine Learning Algorithms. 2023 7th IEEE Congress on Information Science and Technology (CiSt),
  • Ayyadevara, V. K. (2018). Gradient Boosting Machine. In Pro Machine Learning Algorithms : A Hands-On Approach to Implementing Algorithms in Python and R (pp. 117-134). Apress. https://doi.org/10.1007/978-1-4842-3564-5_6
  • Bennett, M., Hayes, K., Kleczyk, E. J., & Mehta, R. (2022). Similarities and differences between machine learning and traditional advanced statistical modeling in healthcare analytics. arXiv preprint arXiv:2201.02469.
  • Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
  • Biau, G., Cadre, B., & Rouvière, L. (2019). Accelerated gradient boosting. Machine Learning, 108(6), 971-992. https://doi.org/10.1007/s10994-019-05787-1
  • Bozuyla, M. (2021). AdaBoost Ensemble Learning on top of Naive Bayes Algorithm to Discriminate Fake and Genuine News from Social Media [Naive Bayes Algoritmasının AdaBoost Topluluk Öğrenme Modeli ile Sosyal Medyada Sahte ve Gerçek Haberlerinin Ayırt Edilmesi]. European Journal of Science and Technology(28), 459-462. https://doi.org/10.31590/ejosat.1005577
  • Casotti, V., & D’Antiga, L. (2019). Basic Principles of Liver Physiology. In L. D'Antiga (Ed.), Pediatric Hepatology and Liver Transplantation (pp. 21-39). Springer International Publishing. https://doi.org/10.1007/978-3-319-96400-3_2
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
  • Decharatanachart, P., Chaiteerakij, R., Tiyarattanachai, T., & Treeprasertsuk, S. (2021). Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterology, 21(1), 10. https://doi.org/10.1186/s12876-020-01585-5
  • El Kharoua, R. (2024). Predict Liver Disease: 1700 Records Dataset. https://www.kaggle.com/datasets/rabieelkharoua/predict-liver-disease-1700-records-dataset
  • Ganie, S. M., Dutta Pramanik, P. K., & Zhao, Z. (2024). Improved liver disease prediction from clinical data through an evaluation of ensemble learning approaches. BMC Medical Informatics and Decision Making, 24(1), 160. https://doi.org/10.1186/s12911-024-02550-y
  • Ghosh, S., Chatterjee, A., & Chatterjee, D. (2021). An Improved Load Feature Extraction Technique for Smart Homes Using Fuzzy-Based NILM. IEEE Transactions on Instrumentation and Measurement, 70, 1-9. https://doi.org/10.1109/TIM.2021.3095093
  • Hidayat, A. (2024). Predictive Modelling of Liver Disease Using Biochemical Markers and K-Nearest Neighbors Algorithm. International Journal of Artificial Intelligence in Medical Issues, 2(2), 104-114.
  • Hinojosa Lee, M. C., Braet, J., & Springael, J. (2024). Performance Metrics for Multilabel Emotion Classification: Comparing Micro, Macro, and Weighted F1-Scores. Applied Sciences, 14(21), 9863. https://www.mdpi.com/2076-3417/14/21/9863
  • Hornyák, O., & Iantovics, L. B. (2023). AdaBoost Algorithm Could Lead to Weak Results for Data with Certain Characteristics. Mathematics, 11(8), 1801. https://www.mdpi.com/2227-7390/11/8/1801
  • Jovović, I., Grebović, M., Pokvić, L. G., Popović, T., & Čakić, S. (2024). Liver Diseases Classification Using Machine Learning Algorithms. In A. Badnjević & L. Gurbeta Pokvić, MEDICON’23 and CMBEBIH’23 Cham.
  • Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput, 14(7), 8459-8486. https://doi.org/10.1007/s12652-021-03612-z
  • Luo, J., Wei, Z., Man, J., & Xu, S. (2023). TRBoost: a generic gradient boosting machine based on trust-region method. Applied Intelligence, 53(22), 27876-27891. https://doi.org/10.1007/s10489-023-05000-w
  • Makkena, K. R., & Natarajan, K. (2023). Classification Algorithms for Liver Epidemic Identification. EAI Endorsed Transactions on Pervasive Health and Technology, 9. https://doi.org/10.4108/eetpht.9.4379
  • Mathur, S., Karodi, P., & Dhanare, R. (2024, 13-14 March 2024). Fatty Liver Disease Prediction Through Machine Learning. 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL),
  • Mohamed, S., Ezzat, R., Ghorab, S., Bhatnagar, R., & Shams, M. Y. (2023, 1-3 Nov. 2023). Liver Disease Identification Based on Machine Learning Algorithms. 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS),
  • Pei, X., Zuo, K., Li, Y., & Pang, Z. (2023). A Review of the Application of Multi-modal Deep Learning in Medicine: Bibliometrics and Future Directions. International Journal of Computational Intelligence Systems, 16(1), 44. https://doi.org/10.1007/s44196-023-00225-6
  • Pilankar, A., & Shyamala, L. (2024, 5-7 June 2024). Liver disease Prediction using Ensemble Learning. 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC),
  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31.
  • Raj, H., N, G., Kodipalli, A., & Rao, T. (2024, 28-29 June 2024). Prediction of Chronic Liver Disease Using Machine Learning Algorithms and Interpretation with SHAP Kernels. 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS),
  • Rewicki, F., Denzler, J., & Niebling, J. (2023). Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series. Applied Sciences, 13(3), 1778. https://www.mdpi.com/2076-3417/13/3/1778
  • Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
  • Schapire, R. E. (2013). Explaining AdaBoost. In B. Schölkopf, Z. Luo, & V. Vovk (Eds.), Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik (pp. 37-52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_5
  • Verbakel, J. Y., Steyerberg, E. W., Uno, H., De Cock, B., Wynants, L., Collins, G. S., & Van Calster, B. (2020). ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. Journal of Clinical Epidemiology, 126, 207-216. https://doi.org/10.1016/j.jclinepi.2020.01.028
  • Yadav, H. S., & Singhal, R. K. (2023, 3-5 March 2023). Classification and Prediction of Liver Disease Diagnosis Using Machine Learning Algorithms. 2023 2nd International Conference for Innovation in Technology (INOCON),
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ümit Yılmaz 0000-0003-4268-8598

Erol Özçekiç 0000-0002-1896-6853

Erken Görünüm Tarihi 15 Ağustos 2025
Yayımlanma Tarihi 22 Ağustos 2025
Gönderilme Tarihi 27 Kasım 2024
Kabul Tarihi 25 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 2

Kaynak Göster

APA Yılmaz, Ü., & Özçekiç, E. (2025). CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(2), 1882-1892. https://doi.org/10.31796/ogummf.1591951
AMA Yılmaz Ü, Özçekiç E. CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES. ESOGÜ Müh Mim Fak Derg. Ağustos 2025;33(2):1882-1892. doi:10.31796/ogummf.1591951
Chicago Yılmaz, Ümit, ve Erol Özçekiç. “CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 2 (Ağustos 2025): 1882-92. https://doi.org/10.31796/ogummf.1591951.
EndNote Yılmaz Ü, Özçekiç E (01 Ağustos 2025) CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 2 1882–1892.
IEEE Ü. Yılmaz ve E. Özçekiç, “CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 2, ss. 1882–1892, 2025, doi: 10.31796/ogummf.1591951.
ISNAD Yılmaz, Ümit - Özçekiç, Erol. “CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/2 (Ağustos2025), 1882-1892. https://doi.org/10.31796/ogummf.1591951.
JAMA Yılmaz Ü, Özçekiç E. CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES. ESOGÜ Müh Mim Fak Derg. 2025;33:1882–1892.
MLA Yılmaz, Ümit ve Erol Özçekiç. “CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 2, 2025, ss. 1882-9, doi:10.31796/ogummf.1591951.
Vancouver Yılmaz Ü, Özçekiç E. CLASSIFYING LIVER DISEASE WITH BOOSTING MACHINE LEARNING APPROACHES. ESOGÜ Müh Mim Fak Derg. 2025;33(2):1882-9.

20873      13565         15461