Araştırma Makalesi
BibTex RIS Kaynak Göster

Teknoloji İle Zenginleştirilmiş Öğrenme Ortamlarında Öğrencilerin Bilimsel Argümantasyonuna Rehberli Öğrenme Desteği Sağlanması

Yıl 2017, Cilt: 10 Sayı: 1, 122 - 152, 10.03.2017

Öz

Yirmi yıl boyunca araştırmacılar ve uygulayıcılar, argümantasyonu desteklemek ve öğretmek amacıyla

teknoloji araçları geliştirmiş ve teknoloji ile zenginleştirilmiş öğrenme ortamları (TELE’ler) tasarlamıştır.

İlgili olarak, Kim-Hannafin vd. (2007), geçerli bir TELE3 sağlamak amacıyla pedagojik bir çerçeve sunmuştur.

Tasarıma dayanan bu çalışmanın amacı, bu çerçevenin mikro bağlam boyutunu araştırmak ve öğrenci-araç,

öğretmen-öğrenci ve öğretmen-araç arasındaki etkileşimleri analiz etmekti. Bu bakımdan, teknoloji ile

zenginleştirilmiş bir öğrenme ortamındaki rolleri nasıl dengelediklerini anlamak amacıyla, teknoloji ile

zenginleştirilmiş bir öğrenme ortamında çeşitli öğrenme desteklerinin kırk bir ortaokul öğrencisinin

argümantasyonu üzerindeki etkisi ve öğrenme desteklerinin öğretmen ve teknoloji aracı arasındaki dağılımı

analiz edilmiştir. Öğrencilerin argümantasyonu, günlük puanları ve ön testleri incelenmiş ve nicel bir analiz -

tanımlayıcı istatistikler, tek yönlü tekrarlı ölçümlü bir ANOVA ve MANCOVA ve nitel bir analiz

gerçekleştirilmiştir. Çalışmanın sonuçları, öğrencilerin ipuçlarının, cümle başlatıcılarının ve soru

yönlendiricilerinin kullanımından yararlandığını göstermiştir. Ayrıca, öğretmen desteği önemlidir ve

Toulmin’in çerçevesinde olduğu gibi, öğrencileri sav, gerekçe, destek, garantiler ile argümanlar, bazı

durumlarda da çürütmeler kullanarak daha sofistike olanları kurmadaki yeteneklerini geliştirmeye

yöneltmiştir. Çalışma, öğrencilerin öğrenmesini ve argümantasyonunu kolaylaştırmak amacıyla teknoloji ile

zenginleştirilmiş öğrenme ortamında öğrenme destekleri tasarlamaya yönelik yol gösterici ilkeler ve stratejiler

sunar.

Kaynakça

  • Albe, V. (2008). When Scientific Knowledge, Daily Life Experience, Epistemological and Social
  • Considerations Intersect: Students’ Argumentation in Group Discussions on a Socio-scientific
  • Issue. Research in Science Education, 38(1), 67-90.
  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from
  • the web with KIE. International Journal of Science Education, 22(8), 797-817.
  • Bell, P. & Davis, E.A. (2000). Designing Mildred: Scaffolding Students' Reflection and
  • Argumentation Using a Cognitive Software Guide. In B. Fishman & S. O'Connor-Divelbiss
  • (Eds.), Fourth International Conference of the Learning Sciences (pp. 142-149). Mahwah, NJ:
  • Erlbaum
  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments
  • during problem-based learning: the impact of computer-based scaffolds. Educational
  • Technology Research and Development, 58(3), 285-309.
  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2011). Problem-based learning and
  • argumentation: Testing a scaffolding framework to support middle school students’ creation
  • of evidence-based arguments. Instructional Science, 39(5), 667-694.
  • Bogdan, R. C. & Biklen, S. K. (2007). Qualitative Research for Education (5th ed.). Boston: Pearson.
  • Bulu, S.T. (2008). Scaffolding middle school students’ content knowledge and ill-structured problem
  • solving in a problem-based hypermedia learning environment. Texas A&M University.
  • Retrieved from ProQuest Dissertations & Theses. (AAT 3321651).
  • Cavagnetto, A. R. (2010). Argument to Foster Scientific Literacy. Review of Educational Research,
  • 80(3), 336-371.
  • Cerbin, B. (1988). The nature and development of informal reasoning skills in college students. 12th
  • National Institute on Issues in Teaching and Learning Conference, April 24-27, Chicago, IL.
  • Chin, C. & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on
  • argumentation during collaborative group discussions in science. Journal of Research in
  • Science Teaching, 47(7), 883-908.
  • Cho, K., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and
  • problem solving. Educational Technology Research and Development, 50(3), 5-22.
  • Chiu, C.-H., Wu, C.-Y., Hsieh, S.-J., Cheng, H., & Huang, C. (2013). Employing a structured
  • interface to advance primary students' communicative competence in a text-based computer
  • mediated environment. Computers & Education , 60 (1), 347-356.
  • http://dx.doi.org/10.1016/j.compedu.2012.09.002
  • Cuthbert, A. J. & Slotta, J. D. (2004). Designing a web-based design curriculum for middle school
  • science: the WISE ‘Houses In The Desert’ project. International Journal of Science Education.
  • 26(7), 821-844.
  • Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation
  • skills about socioscientific issues in high school genetics. Research in Science Education,
  • 40(2), 133-148.
  • Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G. & Fischer F. (2008). The effect of
  • scaffolding students’ context-generating cognitive activity in technology-enhanced case-based
  • learning. Journal of Computers and Education. 51(2), 939-954.
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. Review of research in education, 32(1), 268-291.
  • Duschl, R. (2008b). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. In What Counts as Knowledge in Educational Settings: Disciplinary
  • Knowledge, Assessment, and Curriculum, 32, 268-291.
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. Review of research in education, 32(1), 268-291.
  • Duschl, R. (2008b). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. In What Counts as Knowledge in Educational Settings: Disciplinary
  • Knowledge, Assessment, and Curriculum, 32, 268-291.
  • Er, N. & Ardaç, D. (2008). Design and development of a web-based learning tool for middle-level
  • science students: a study on particulate nature of matters for six graders. Retrieved December
  • 21, 2009, from http://ietc2008.home.anadolu.edu.tr/ietc2008.html
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the
  • application of Toulmin's argument pattern for studying science discourse. Science Education,
  • 88(6), 915-933.
  • Evagorou, M. & Avraamidou, L. (2008). Technology in support of argument construction in school
  • science. Educational Media International, 45(1), 33-45.
  • Ge, X. & Land, M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task
  • using question prompts and peer interactions. Educational Technology Research and
  • Development. 51(1), 21-38.
  • Hannafin, M. J., Land, S. M. & Oliver, K. (1999). Instructional-Design Theories and Models:A new
  • paradigm of instructional technology. NewJersey: Lawrence Erlbaum Associates.
  • Hsu, P.-S., Van Dyke, M., & Chen, Y. (2015). The effect of a graph-oriented computer-assisted
  • project-based learning environment on argumentation skills. Journal of Computer Assisted
  • Learning , 31 (1), 32-58. http://dx.doi.org/10.1111/jcal.12080
  • Iordanou, K. & Constantinou, C. P. (2015). Supporting Use of Evidence in Argumentation Through Practice in Argumentation and Reflection in the Context of SOCRATES Learning Environment. Science Education, 99(2), 282-311.
  • Jiménez-Aleixandre, M. P., Rodriguez, A. B, & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792.
  • Kim, M. C., Hannafin, M. J. & Bryan, L. A. (2007). Technology-Enhanced Inquiry Tools in Science Education: An Emerging Pedagogical Framework for Classroom Practice. Science Education. 91(6), 1010-1030.
  • Kim, M. C. & Hannafin, M. J. (2011). Scaffolding 6th graders’ problem solving in technologyenhanced science classrooms: a qualitative case study. Instructional Science. 39(3), 255-282.
  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77(3), 319-337.
  • Land, S. M. & Zembal-Saul, C. (2003). Scaffolding reflection and articulation of scientific explanations in a data-rich, project-based learning environment: an investigation of progress portfolio. ETR&D, 51(4), 65-84.
  • Lee, H. S. & Songer, N. B. (2004) Expanding an Understanding of Scaffolding Theory Using an Inquiry-Fostering Science Program. Paper presented at the Annual Meetings of the American Educational Research Association, San Diego, CA. Lim, C.P. (In Press). Formulating guidelines for instructional planning in technology enhanced learning environments. Journal of Interactive Learning Research.
  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Wiley Periodicals, Inc. Science Education, 87(4), 517-538.
  • McNeill, K.L. (2006). Supporting Students’ Construction of Scientific Explanation through Curricular Scaffolds and Teacher Instructional Practices (University of Michigan). Retrievedfrom ProQuest Dissertations & Theses. (AAT 3238032).
  • McNeill, K. L., Lizotte, D. J., Krajcik, J. & Marx, R. W. (2006). Supporting Students' Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal of Learning Sciences. 15(2), 153-191.
  • Onyancha, K. M. & Anderson, C. W. (2010). Matter and Energy Transformation: An Investigation into Secondary School Students’ Arguments. Environmental Literacy Research Project.
  • Patton, M. Q. (2002). How to Use Qualitative Methods in Evaluation. California: SAGE Publications.
  • Puntambekar, S. & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185-217.
  • Pumtambekar, S. & Hübscher, R. (2005). Tools for Scaffolding Students in a Complex Learning Environment: What Have We Gained and What Have We Missed? Educational Psychologist,
  • 40(1), 1-12.
  • Raes A., & Schellens, T. (2016). The effects of teacher-led class interventions during technologyenhanced science inquiry on students’ knowledge integration and basic need satisfaction. Computers & Education, 92-93, 125-141.
  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273-304.
  • Sampson, V. & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472.
  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.
  • Sharma, P. & Hannafin M. J. (2007). Scaffolding in Technology-Enhanced Learning Environments. Interactive Learning Environments. 15(1), 27-46.
  • Strauss, A., & Corbin, J. (2008). Basics of qualitative research: Grounded theory procedures and techniques. (3rd ed.).Newbury Park, CA: Sage.
  • Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305-335.
  • Taylor, S. J., & Bogdan, R. (1998). Introduction to qualitative research methods: A guidebook and resource. (3rd ed.). New York: Wiley
  • Toulmin, S. E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.
  • Toulmin, S. E. (2003). The uses of argument. Cambridge University Press.
  • Van Dijk, A. M. & Lazonder, A.W. (2016). Scaffolding students’ use of learner-generated content in a technology-enhanced inquiry learning environment. Interactive Learning Environments. 24(1), 194-204. DOI: 10.1080/10494820.2013.834828.
  • Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2007). Argumentation and the Learning of Science. Contributions from Science Education Research, 8, 377-388.
  • Walker, K. A. & Zeidler, D. L. (2007). Promoting Discourse about Socioscientific Issues through Scaffolded Inquiry. International Journal of Science Education. 29(11), 1387-1410.
  • Wang, F. & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development. 53(4), 5-23.
  • White, B. Y. & Frederiksen, J. R. (2000). Technological tools and instructional approaches for making scientific inquiry accessible to all. In M. J. Jacobson & R. B. Kozma (Eds.) Innovations in science and mathematics education (pp. 321-356). New Jersey: Lawrence Erlbaum Associates, Inc., Publishers.
  • WISE (1998). Wise web page, Introduction. Retrieved July 10, 2011, from <http://www.wise.berkeley.edu/pages/intro/wiseFlashIntro.php>
Yıl 2017, Cilt: 10 Sayı: 1, 122 - 152, 10.03.2017

Öz

Kaynakça

  • Albe, V. (2008). When Scientific Knowledge, Daily Life Experience, Epistemological and Social
  • Considerations Intersect: Students’ Argumentation in Group Discussions on a Socio-scientific
  • Issue. Research in Science Education, 38(1), 67-90.
  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from
  • the web with KIE. International Journal of Science Education, 22(8), 797-817.
  • Bell, P. & Davis, E.A. (2000). Designing Mildred: Scaffolding Students' Reflection and
  • Argumentation Using a Cognitive Software Guide. In B. Fishman & S. O'Connor-Divelbiss
  • (Eds.), Fourth International Conference of the Learning Sciences (pp. 142-149). Mahwah, NJ:
  • Erlbaum
  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments
  • during problem-based learning: the impact of computer-based scaffolds. Educational
  • Technology Research and Development, 58(3), 285-309.
  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2011). Problem-based learning and
  • argumentation: Testing a scaffolding framework to support middle school students’ creation
  • of evidence-based arguments. Instructional Science, 39(5), 667-694.
  • Bogdan, R. C. & Biklen, S. K. (2007). Qualitative Research for Education (5th ed.). Boston: Pearson.
  • Bulu, S.T. (2008). Scaffolding middle school students’ content knowledge and ill-structured problem
  • solving in a problem-based hypermedia learning environment. Texas A&M University.
  • Retrieved from ProQuest Dissertations & Theses. (AAT 3321651).
  • Cavagnetto, A. R. (2010). Argument to Foster Scientific Literacy. Review of Educational Research,
  • 80(3), 336-371.
  • Cerbin, B. (1988). The nature and development of informal reasoning skills in college students. 12th
  • National Institute on Issues in Teaching and Learning Conference, April 24-27, Chicago, IL.
  • Chin, C. & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on
  • argumentation during collaborative group discussions in science. Journal of Research in
  • Science Teaching, 47(7), 883-908.
  • Cho, K., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and
  • problem solving. Educational Technology Research and Development, 50(3), 5-22.
  • Chiu, C.-H., Wu, C.-Y., Hsieh, S.-J., Cheng, H., & Huang, C. (2013). Employing a structured
  • interface to advance primary students' communicative competence in a text-based computer
  • mediated environment. Computers & Education , 60 (1), 347-356.
  • http://dx.doi.org/10.1016/j.compedu.2012.09.002
  • Cuthbert, A. J. & Slotta, J. D. (2004). Designing a web-based design curriculum for middle school
  • science: the WISE ‘Houses In The Desert’ project. International Journal of Science Education.
  • 26(7), 821-844.
  • Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation
  • skills about socioscientific issues in high school genetics. Research in Science Education,
  • 40(2), 133-148.
  • Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G. & Fischer F. (2008). The effect of
  • scaffolding students’ context-generating cognitive activity in technology-enhanced case-based
  • learning. Journal of Computers and Education. 51(2), 939-954.
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. Review of research in education, 32(1), 268-291.
  • Duschl, R. (2008b). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. In What Counts as Knowledge in Educational Settings: Disciplinary
  • Knowledge, Assessment, and Curriculum, 32, 268-291.
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. Review of research in education, 32(1), 268-291.
  • Duschl, R. (2008b). Science education in three-part harmony: Balancing conceptual, epistemic, and
  • social learning goals. In What Counts as Knowledge in Educational Settings: Disciplinary
  • Knowledge, Assessment, and Curriculum, 32, 268-291.
  • Er, N. & Ardaç, D. (2008). Design and development of a web-based learning tool for middle-level
  • science students: a study on particulate nature of matters for six graders. Retrieved December
  • 21, 2009, from http://ietc2008.home.anadolu.edu.tr/ietc2008.html
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the
  • application of Toulmin's argument pattern for studying science discourse. Science Education,
  • 88(6), 915-933.
  • Evagorou, M. & Avraamidou, L. (2008). Technology in support of argument construction in school
  • science. Educational Media International, 45(1), 33-45.
  • Ge, X. & Land, M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task
  • using question prompts and peer interactions. Educational Technology Research and
  • Development. 51(1), 21-38.
  • Hannafin, M. J., Land, S. M. & Oliver, K. (1999). Instructional-Design Theories and Models:A new
  • paradigm of instructional technology. NewJersey: Lawrence Erlbaum Associates.
  • Hsu, P.-S., Van Dyke, M., & Chen, Y. (2015). The effect of a graph-oriented computer-assisted
  • project-based learning environment on argumentation skills. Journal of Computer Assisted
  • Learning , 31 (1), 32-58. http://dx.doi.org/10.1111/jcal.12080
  • Iordanou, K. & Constantinou, C. P. (2015). Supporting Use of Evidence in Argumentation Through Practice in Argumentation and Reflection in the Context of SOCRATES Learning Environment. Science Education, 99(2), 282-311.
  • Jiménez-Aleixandre, M. P., Rodriguez, A. B, & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792.
  • Kim, M. C., Hannafin, M. J. & Bryan, L. A. (2007). Technology-Enhanced Inquiry Tools in Science Education: An Emerging Pedagogical Framework for Classroom Practice. Science Education. 91(6), 1010-1030.
  • Kim, M. C. & Hannafin, M. J. (2011). Scaffolding 6th graders’ problem solving in technologyenhanced science classrooms: a qualitative case study. Instructional Science. 39(3), 255-282.
  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77(3), 319-337.
  • Land, S. M. & Zembal-Saul, C. (2003). Scaffolding reflection and articulation of scientific explanations in a data-rich, project-based learning environment: an investigation of progress portfolio. ETR&D, 51(4), 65-84.
  • Lee, H. S. & Songer, N. B. (2004) Expanding an Understanding of Scaffolding Theory Using an Inquiry-Fostering Science Program. Paper presented at the Annual Meetings of the American Educational Research Association, San Diego, CA. Lim, C.P. (In Press). Formulating guidelines for instructional planning in technology enhanced learning environments. Journal of Interactive Learning Research.
  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Wiley Periodicals, Inc. Science Education, 87(4), 517-538.
  • McNeill, K.L. (2006). Supporting Students’ Construction of Scientific Explanation through Curricular Scaffolds and Teacher Instructional Practices (University of Michigan). Retrievedfrom ProQuest Dissertations & Theses. (AAT 3238032).
  • McNeill, K. L., Lizotte, D. J., Krajcik, J. & Marx, R. W. (2006). Supporting Students' Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal of Learning Sciences. 15(2), 153-191.
  • Onyancha, K. M. & Anderson, C. W. (2010). Matter and Energy Transformation: An Investigation into Secondary School Students’ Arguments. Environmental Literacy Research Project.
  • Patton, M. Q. (2002). How to Use Qualitative Methods in Evaluation. California: SAGE Publications.
  • Puntambekar, S. & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185-217.
  • Pumtambekar, S. & Hübscher, R. (2005). Tools for Scaffolding Students in a Complex Learning Environment: What Have We Gained and What Have We Missed? Educational Psychologist,
  • 40(1), 1-12.
  • Raes A., & Schellens, T. (2016). The effects of teacher-led class interventions during technologyenhanced science inquiry on students’ knowledge integration and basic need satisfaction. Computers & Education, 92-93, 125-141.
  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273-304.
  • Sampson, V. & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472.
  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.
  • Sharma, P. & Hannafin M. J. (2007). Scaffolding in Technology-Enhanced Learning Environments. Interactive Learning Environments. 15(1), 27-46.
  • Strauss, A., & Corbin, J. (2008). Basics of qualitative research: Grounded theory procedures and techniques. (3rd ed.).Newbury Park, CA: Sage.
  • Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305-335.
  • Taylor, S. J., & Bogdan, R. (1998). Introduction to qualitative research methods: A guidebook and resource. (3rd ed.). New York: Wiley
  • Toulmin, S. E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.
  • Toulmin, S. E. (2003). The uses of argument. Cambridge University Press.
  • Van Dijk, A. M. & Lazonder, A.W. (2016). Scaffolding students’ use of learner-generated content in a technology-enhanced inquiry learning environment. Interactive Learning Environments. 24(1), 194-204. DOI: 10.1080/10494820.2013.834828.
  • Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2007). Argumentation and the Learning of Science. Contributions from Science Education Research, 8, 377-388.
  • Walker, K. A. & Zeidler, D. L. (2007). Promoting Discourse about Socioscientific Issues through Scaffolded Inquiry. International Journal of Science Education. 29(11), 1387-1410.
  • Wang, F. & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development. 53(4), 5-23.
  • White, B. Y. & Frederiksen, J. R. (2000). Technological tools and instructional approaches for making scientific inquiry accessible to all. In M. J. Jacobson & R. B. Kozma (Eds.) Innovations in science and mathematics education (pp. 321-356). New Jersey: Lawrence Erlbaum Associates, Inc., Publishers.
  • WISE (1998). Wise web page, Introduction. Retrieved July 10, 2011, from <http://www.wise.berkeley.edu/pages/intro/wiseFlashIntro.php>
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Konular Ekonomi
Bölüm Makaleler
Yazarlar

Hale Üstünel Bu kişi benim

Tuğba Tokel Bu kişi benim

Yayımlanma Tarihi 10 Mart 2017
Gönderilme Tarihi 10 Mart 2017
Kabul Tarihi 25 Aralık 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 1

Kaynak Göster

APA Üstünel, H., & Tokel, T. (2017). Teknoloji İle Zenginleştirilmiş Öğrenme Ortamlarında Öğrencilerin Bilimsel Argümantasyonuna Rehberli Öğrenme Desteği Sağlanması. Ömer Halisdemir Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 10(1), 122-152.
Creative Commons Lisansı
Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.