Since the end of the 20th century, ecological problems have become a priority problem due to industrialization, urbanization, technological developments and rapid population growth. The change in human living standards causes many ecological problems such as unconscious consumption of natural resources, extinction of forests and living species. Ecological Footprint is developed to measure the demand pressure that people exert on the environment. In study, Neural Network Fitting Model was used in MATLAB, for the development Artificial Neural Network (ANN) by using the data of 1996-2018 to estimate Turkey's ecological footprint. Urban Population, Renewable Energy Consumption, R&D Expenditures and Human Development Index were chosen as independent variables. The data were obtained from the database of “World Bank Group” and “Human Development Reports”. For the ANN, Levenberg-Marquardt algorithm was used to determine the appropriate hidden layer and hidden neurons in each layer. The data used to train an artificial neural network using feedforward and backpropagation were randomly divided into three groups for training, testing and validation purposes. R values for each stage, respectively; 0.999, 0.948, was obtained as 1. According to the results obtained, the independent variable with the greatest effect on the ecological footprint was found to be the Urban Population.
Ecological Footprint Artificial Neural Networks Forecasting.
20. yüzyılın sonlarından itibaren sanayileşme, kentleşme, teknolojik gelişmeler ve hızlı nüfus artışı, ekolojik sorunları tüm dünyanın karşı karşıya olduğu öncelikli sorunlardan biri haline getirmiştir. İnsanların yaşam standartlarının değişmesi, doğal kaynakların bilinçsizce tüketilmesine, doğadaki endüstriyel ve evsel atıkların çoğalmasına, tarım arazilerinin, ormanların, canlı türlerinin yok olması gibi ekolojik sorunlara neden olmaktadır. Ekolojik Ayak İzi, insanların çevreye uyguladığı talep baskısını ölçmek için geliştirilmiş bir ölçüttür. Bu çalışmada, Türkiye’nin ekolojik ayak izini tahminlemek amacıyla 1996-2018 dönemine ait verilerden yararlanılıp, yapay sinir ağının geliştirilmesi için MATLAB uygulamasında Neural Network Fitting Modeli kullanılmıştır. Araştırmada, kentsel nüfus, yenilenebilir enerji tüketimi, araştırma ve geliştirme faaliyetleri ve insani gelişme endeksi bağımsız değişkenler olarak seçilmiştir. Tahminlemede kullanılan veriler, “World Bank Group” ve “Human Development Reports”un veri tabanından elde edilmiştir. Yapay sinir ağı modeli için ileri beslemeli yapay sinir ağları kullanılmış olup, uygun gizli katman ve her katmandaki gizli nöronların belirlenmesi aşamasında Levenberg-Marquardt algoritmasından yararlanılmıştır. İleri besleme ve geri yayılım kullanarak bir yapay sinir ağını eğitmek için kullanılan veriler eğitim, test ve doğrulama amacı ile rastgele üç gruba ayrılmıştır. Her aşama için sırası ile R değerleri; 0.999, 0.948, 1 olarak elde edilmiştir. Elde edilen sonuçlara göre, ekolojik ayak izi üzerinde en fazla etkisi olan bağımsız değişken kentsel nüfus olarak bulunmuştur.
Ecological Footprint Artificial Neural Networks Forecasting.
Birincil Dil | İngilizce |
---|---|
Konular | Çevre ve Kültür, İşletme |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 29 Ekim 2023 |
Gönderilme Tarihi | 18 Kasım 2022 |
Kabul Tarihi | 25 Eylül 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 16 Sayı: 4 |