Alkali Zn-Ni Kaplamalara Uygulanan Farklı Pasivasyon İşlemlerinin Etkisi: Geomet 321 ve ML Black Kaplamaların Korozyon Direnci ve Yapışma Performansı
Yıl 2023,
, 84 - 98, 21.12.2023
İbrahim Usta
,
Oğuz Yılmaz
,
Minel Gül
,
Ahmet Can
,
Harun Gül
Öz
Bu çalışma, otomotiv endüstrisinde kullanılan malzemelerin (AISI 1040) korozyon özelliklerinin iyileştirilmesi amaçlanmıştır. Bu amaçla aynı yüzeye iki farklı kaplama tekniği uygulanmıştır. Araştırma kapsamında Alkali Zn-Ni kaplamalara farklı pasivasyon işlemleri (şeffaf, mavi, sarı ve siyah) uygulanmıştır. Pasivasyon tabakası üzerine Geomet 321 ve Geomet ML Black kaplamalar ile kaplanarak; çift katmanlı bir kaplama tabakası oluşturulmuştur. Bu kaplamaların yapışma ve korozyon etkilerini incelemek için kuru yapışma, su, nem ve tuz püskürtme testleri gerçekleştirilmiş ve her bir korozyon testinden sonra Cross Cut Çapraz kesme testleri yapılmıştır. Tüm bu testlerden sonra kırmızı ve beyaz pas oluşumu görsel analiz ile, atomik ağırlık yüzdeleri ve kaplama kalınlıkları ise X-ray ile incelenmiştir. Zn-Ni kaplamada uygulanan şeffaf pasivasyon, 321 ve ML Black sonraki uygulanan kaplamalar için hem yapışma hem de korozyon koruma gereksinimlerini tam olarak karşılamıştır. Testten sonra kaplama numunelerinde kırmızı pas oluşumu gözlenmedi; sadece kısmi beyaz pas oluşumu gözlendi ve yapışma testlerinde kaplama katmanında sıyrılma tespit edilmemiştir. Sonuç olarak, Zn-Ni + Pasivasyon işlemi sonrası uygulanan Geomet 321+ML Black kaplamaları için kullanılan pasivasyon işlemlerinden optimum sonuç; şeffaf pasifleştirilmiş Zn-Ni kaplamalar ile elde edilmiştir. 1200 saat sonunda bile kırmızı pas gözlenmemiştir.
Teşekkür
Bize deneysel uygulama ve test imkanı sağladığı için Uzman Kataforez'e teşekkür ederiz.
Kaynakça
- [1] S. M. A. Shibli, B. N. Meena, and R. Remya, “A review on recent approaches in the field of hot dip zinc galvanizing process,” Surf Coat Technol, vol. 262, pp. 210–215, Jan. 2015, doi: 10.1016/J.SURFCOAT.2014.12.054.
- [2] V. Jagannathan, “Emerging technologies in the hot-dip coating of automotive sheet steel,” JOM, vol. 45, no. 8, pp. 48–51, Aug. 1993, doi: 10.1007/BF03222406/METRICS.
- [3] S. Tan, H. Algül, E. Kiliçaslan, A. Alp, H. Akbulut, and M. Uysal, “The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings,” Colloids Surf A Physicochem Eng Asp, vol. 656, p. 130345, Jan. 2023, doi: 10.1016/J.COLSURFA.2022.130345.
- [4] H. Gul and İ. Usta, “Effect of Alumina Concentration on Morphology, Wear, and Corrosion: Electroless Ni-W-P/Al2O3 Composite Coatings on Aluminum Surfaces,” J Mater Eng Perform, vol. 32, no. 13, pp. 6107–6122, Jul. 2023, doi: 10.1007/S11665-023-08184-X/TABLES/2.
- [5] S. Rajendran, S. Bharathi, and T. Vasudevan, “The Electrodeposition of Zinc-Nickel Alloy from a Cyanide-free Alkaline Plating Bath,” http://dx.doi.org/10.1080/00202967.2000.11871324, vol. 78, no. 3, pp. 129–133, 2017, doi: 10.1080/00202967.2000.11871324.
- [6] X. L. Shang, B. Zhang, E. H. Han, and W. Ke, “Effect of small addition of Mn on the passivation of Zn in 0.1 M NaOH solution,” Electrochim Acta, vol. 56, no. 3, pp. 1417–1425, Jan. 2011, doi: 10.1016/J.ELECTACTA.2010.10.067.
- [7] B. Sundaresan, A. Vasumathi, K. Ravichandran, P. Ravikumar, and B. Sakthivel, “Annealing effect on physical properties of spin coated ZnO films,” http://dx.doi.org/10.1179/1743294412Y.0000000016, vol. 28, no. 5, pp. 323–328, Jun. 2013, doi: 10.1179/1743294412Y.0000000016.
- [8] P. Vany, “Standard Potentials in Aqueous Solutions,” J. Phys. Chem. Ref. Data, vol. 18, pp. 1–21, 1978.
- [9] M. Mokaddem, P. Volovitch, and K. Ogle, “The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel,” Electrochim Acta, vol. 55, no. 27, pp. 7867–7875, Nov. 2010, doi: 10.1016/J.ELECTACTA.2010.02.020.
- [10] T. V. Byk, T. V. Gaevskaya, and L. S. Tsybulskaya, “Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings,” Surf Coat Technol, vol. 202, no. 24, pp. 5817–5823, Aug. 2008, doi: 10.1016/J.SURFCOAT.2008.05.058.
- [11] N. S. Shifrin, B. D. Beck, T. D. Gauthier, S. D. Chapnick, and G. Goodman, “Chemistry, Toxicology, and Human Health Risk of Cyanide Compounds in Soils at Former Manufactured Gas Plant Sites,” Regulatory Toxicology and Pharmacology, vol. 23, no. 2, pp. 106–116, Apr. 1996, doi: 10.1006/RTPH.1996.0032.
- [12] P. K. Leung, C. Ponce-De-León, C. T. J. Low, and F. C. Walsh, “Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery,” Electrochim Acta, vol. 56, no. 18, pp. 6536–6546, Jul. 2011, doi: 10.1016/J.ELECTACTA.2011.04.111.
- [13] O. Kozaderov, J. Światowska, D. Dragoe, D. Burliaev, and P. Volovitch, “Effect of Cr(III) passivation layer on surface modifications of zinc-nickel coatings in chloride solutions,” Journal of Solid State Electrochemistry, vol. 25, no. 4, pp. 1161–1173, Apr. 2021, doi: 10.1007/S10008-021-04898-X/FIGURES/9.
- [14] A. Urtiaga, E. Bringas, R. Mediavilla, and I. Ortiz, “The role of liquid membranes in the selective separation and recovery of zinc for the regeneration of Cr(III) passivation baths,” J Memb Sci, vol. 356, no. 1–2, pp. 88–95, Jul. 2010, doi: 10.1016/J.MEMSCI.2010.03.034.
- [15] K. G. McLaren, J. H. Green, and A. H. Kingsbury, “A radiotracer study of the passivation of zinc in chromate solution—I,” Corros Sci, vol. 1, no. 1–2, pp. 161-IN13, Jan. 1961, doi: 10.1016/0010-938X(61)90022-1.
- [16] T. Bellezze, G. Roventi, and R. Fratesi, “Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings,” Surf Coat Technol, vol. 155, no. 2–3, pp. 221–230, Jun. 2002, doi: 10.1016/S0257-8972(02)00047-6.
- [17] P. L. Hagans and C. M. Haas, “Chromate Conversion Coatings,” Surface Engineering, pp. 405–411, 1994, doi: 10.31399/ASM.HB.V05.A0001275.
- [18] Y. D. Yu, G. Y. Wei, J. W. Lou, H. L. Ge, L. X. Sun, and L. Z. Zhu, “Influence of bath temperature on zinc plating and passivation process,” http://dx.doi.org/10.1179/1743294412Y.0000000102, vol. 29, no. 3, pp. 234–239, Apr. 2013, doi: 10.1179/1743294412Y.0000000102.
- [19] R. Berger, U. Bexell, T. Mikael Grehk, and S. E. Hörnström, “A comparative study of the corrosion protective properties of chromium and chromium free passivation methods,” Surf Coat Technol, vol. 202, no. 2, pp. 391–397, Nov. 2007, doi: 10.1016/J.SURFCOAT.2007.06.001.
- [20] P. Sharma, S. P. Singh, S. K. Parakh, and Y. W. Tong, “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction,” https://doi.org/10.1080/21655979.2022.2037273, vol. 13, no. 3, pp. 4923–4938, 2022, doi: 10.1080/21655979.2022.2037273.
- [21] A. Can and L. Akyalçın, “Alkali Çinko Ve Alaşımlı Çinko Kaplama Üzerine Çözücü Bazlı Çinko Lamelli Kaplama Uygulaması İle Oluşturulan Çok Katmanlı Kaplamanın Korozyon Önleme Performansı Üzerine Etkisinin İncelenmesi,” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 30, no. 2, pp. 300–308, Aug. 2022, doi: 10.31796/OGUMMF.1074520.
- [22] N. R. Short, A. Abibsi, and J. K. Dennis, “Corrosion resistance of electroplated zinc alloy coatings,” http://dx.doi.org/10.1080/00202967.1989.11870845, vol. 67 pt 3, pp. 73–77, 2017, doi: 10.1080/00202967.1989.11870845.
- [23] I. Suzuki, Y. Hisamatsu, and N. Masuko, “Nature of Atmospheric Rust on Iron,” J Electrochem Soc, vol. 127, no. 10, pp. 2210–2215, Oct. 1980, doi: 10.1149/1.2129376/XML.
- [24] “Nem Testi (MIL-STD-810G Metod 507.5).” Accessed: Sep. 15, 2023. [Online]. Available: https://www.laboratuvar.org/endustriyel/mil-std-810g-testleri/nem-testi-(mil-std-810g-metod-5075)/.
- [25] “GEOMET® Protection Principals”, Accessed: Sep. 15, 2023. [Online]. Available: www.nofmetalcoatings.com.
- [26] “Zinc-Nickel Electroplating Services | Plating Services | SPC.” Accessed: Sep. 15, 2023. [Online]. Available: https://www.sharrettsplating.com/coatings/zinc-nickel.
Effect of Different Passivation Treatments on Alkali Zn-Ni Coatings: Corrosion Resistance and Adhesion Performance of Geomet 321 and ML Black Coatings
Yıl 2023,
, 84 - 98, 21.12.2023
İbrahim Usta
,
Oğuz Yılmaz
,
Minel Gül
,
Ahmet Can
,
Harun Gül
Öz
This study aims to improve the corrosion properties of (AISI 1040) materials used in the automotive industry. For this purpose, two different coating techniques were applied to the same surface. As part of the research, different passivation processes (transparent, blue, yellow, and black) were applied to alkaline Zn-Ni coatings. Geomet 321 and Geomet ML Black coatings were deposited on the passivation layer to form a double-layer coating. In order to investigate the adhesion and corrosion effects of these coatings, a dry adhesion test, a water test, a humidity test, and a salt spray test were carried out, and cross-cut adhesion tests were carried out after each corrosion test. After all these tests, rust formation was analysed by visual analysis, and atomic weight percentages and coating thicknesses were examined by X-ray. The transparent passivation after the Zn-Ni coating fully satisfied both adhesion and corrosion protection requirements for 321 and ML Black coatings. No red rust formation was observed on the coating samples after the test; only partial white rust formation was observed, and no peeling of the coating layer was detected in the adhesion tests. As a result, the optimum result of the passivation processes used for Geomet 321+ML Black coatings applied after the Zn-Ni + passivation process was obtained with transparent passivated Zn-Ni coatings. Even after 1200 hours, no red rust was observed in passivated Zn-Ni coating+ Geomet 321+ Geomet ML Black.
Teşekkür
We would like to thank Uzman Kataforez for providing us with experimental applications and testing opportunities.
Kaynakça
- [1] S. M. A. Shibli, B. N. Meena, and R. Remya, “A review on recent approaches in the field of hot dip zinc galvanizing process,” Surf Coat Technol, vol. 262, pp. 210–215, Jan. 2015, doi: 10.1016/J.SURFCOAT.2014.12.054.
- [2] V. Jagannathan, “Emerging technologies in the hot-dip coating of automotive sheet steel,” JOM, vol. 45, no. 8, pp. 48–51, Aug. 1993, doi: 10.1007/BF03222406/METRICS.
- [3] S. Tan, H. Algül, E. Kiliçaslan, A. Alp, H. Akbulut, and M. Uysal, “The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings,” Colloids Surf A Physicochem Eng Asp, vol. 656, p. 130345, Jan. 2023, doi: 10.1016/J.COLSURFA.2022.130345.
- [4] H. Gul and İ. Usta, “Effect of Alumina Concentration on Morphology, Wear, and Corrosion: Electroless Ni-W-P/Al2O3 Composite Coatings on Aluminum Surfaces,” J Mater Eng Perform, vol. 32, no. 13, pp. 6107–6122, Jul. 2023, doi: 10.1007/S11665-023-08184-X/TABLES/2.
- [5] S. Rajendran, S. Bharathi, and T. Vasudevan, “The Electrodeposition of Zinc-Nickel Alloy from a Cyanide-free Alkaline Plating Bath,” http://dx.doi.org/10.1080/00202967.2000.11871324, vol. 78, no. 3, pp. 129–133, 2017, doi: 10.1080/00202967.2000.11871324.
- [6] X. L. Shang, B. Zhang, E. H. Han, and W. Ke, “Effect of small addition of Mn on the passivation of Zn in 0.1 M NaOH solution,” Electrochim Acta, vol. 56, no. 3, pp. 1417–1425, Jan. 2011, doi: 10.1016/J.ELECTACTA.2010.10.067.
- [7] B. Sundaresan, A. Vasumathi, K. Ravichandran, P. Ravikumar, and B. Sakthivel, “Annealing effect on physical properties of spin coated ZnO films,” http://dx.doi.org/10.1179/1743294412Y.0000000016, vol. 28, no. 5, pp. 323–328, Jun. 2013, doi: 10.1179/1743294412Y.0000000016.
- [8] P. Vany, “Standard Potentials in Aqueous Solutions,” J. Phys. Chem. Ref. Data, vol. 18, pp. 1–21, 1978.
- [9] M. Mokaddem, P. Volovitch, and K. Ogle, “The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel,” Electrochim Acta, vol. 55, no. 27, pp. 7867–7875, Nov. 2010, doi: 10.1016/J.ELECTACTA.2010.02.020.
- [10] T. V. Byk, T. V. Gaevskaya, and L. S. Tsybulskaya, “Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings,” Surf Coat Technol, vol. 202, no. 24, pp. 5817–5823, Aug. 2008, doi: 10.1016/J.SURFCOAT.2008.05.058.
- [11] N. S. Shifrin, B. D. Beck, T. D. Gauthier, S. D. Chapnick, and G. Goodman, “Chemistry, Toxicology, and Human Health Risk of Cyanide Compounds in Soils at Former Manufactured Gas Plant Sites,” Regulatory Toxicology and Pharmacology, vol. 23, no. 2, pp. 106–116, Apr. 1996, doi: 10.1006/RTPH.1996.0032.
- [12] P. K. Leung, C. Ponce-De-León, C. T. J. Low, and F. C. Walsh, “Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery,” Electrochim Acta, vol. 56, no. 18, pp. 6536–6546, Jul. 2011, doi: 10.1016/J.ELECTACTA.2011.04.111.
- [13] O. Kozaderov, J. Światowska, D. Dragoe, D. Burliaev, and P. Volovitch, “Effect of Cr(III) passivation layer on surface modifications of zinc-nickel coatings in chloride solutions,” Journal of Solid State Electrochemistry, vol. 25, no. 4, pp. 1161–1173, Apr. 2021, doi: 10.1007/S10008-021-04898-X/FIGURES/9.
- [14] A. Urtiaga, E. Bringas, R. Mediavilla, and I. Ortiz, “The role of liquid membranes in the selective separation and recovery of zinc for the regeneration of Cr(III) passivation baths,” J Memb Sci, vol. 356, no. 1–2, pp. 88–95, Jul. 2010, doi: 10.1016/J.MEMSCI.2010.03.034.
- [15] K. G. McLaren, J. H. Green, and A. H. Kingsbury, “A radiotracer study of the passivation of zinc in chromate solution—I,” Corros Sci, vol. 1, no. 1–2, pp. 161-IN13, Jan. 1961, doi: 10.1016/0010-938X(61)90022-1.
- [16] T. Bellezze, G. Roventi, and R. Fratesi, “Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings,” Surf Coat Technol, vol. 155, no. 2–3, pp. 221–230, Jun. 2002, doi: 10.1016/S0257-8972(02)00047-6.
- [17] P. L. Hagans and C. M. Haas, “Chromate Conversion Coatings,” Surface Engineering, pp. 405–411, 1994, doi: 10.31399/ASM.HB.V05.A0001275.
- [18] Y. D. Yu, G. Y. Wei, J. W. Lou, H. L. Ge, L. X. Sun, and L. Z. Zhu, “Influence of bath temperature on zinc plating and passivation process,” http://dx.doi.org/10.1179/1743294412Y.0000000102, vol. 29, no. 3, pp. 234–239, Apr. 2013, doi: 10.1179/1743294412Y.0000000102.
- [19] R. Berger, U. Bexell, T. Mikael Grehk, and S. E. Hörnström, “A comparative study of the corrosion protective properties of chromium and chromium free passivation methods,” Surf Coat Technol, vol. 202, no. 2, pp. 391–397, Nov. 2007, doi: 10.1016/J.SURFCOAT.2007.06.001.
- [20] P. Sharma, S. P. Singh, S. K. Parakh, and Y. W. Tong, “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction,” https://doi.org/10.1080/21655979.2022.2037273, vol. 13, no. 3, pp. 4923–4938, 2022, doi: 10.1080/21655979.2022.2037273.
- [21] A. Can and L. Akyalçın, “Alkali Çinko Ve Alaşımlı Çinko Kaplama Üzerine Çözücü Bazlı Çinko Lamelli Kaplama Uygulaması İle Oluşturulan Çok Katmanlı Kaplamanın Korozyon Önleme Performansı Üzerine Etkisinin İncelenmesi,” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 30, no. 2, pp. 300–308, Aug. 2022, doi: 10.31796/OGUMMF.1074520.
- [22] N. R. Short, A. Abibsi, and J. K. Dennis, “Corrosion resistance of electroplated zinc alloy coatings,” http://dx.doi.org/10.1080/00202967.1989.11870845, vol. 67 pt 3, pp. 73–77, 2017, doi: 10.1080/00202967.1989.11870845.
- [23] I. Suzuki, Y. Hisamatsu, and N. Masuko, “Nature of Atmospheric Rust on Iron,” J Electrochem Soc, vol. 127, no. 10, pp. 2210–2215, Oct. 1980, doi: 10.1149/1.2129376/XML.
- [24] “Nem Testi (MIL-STD-810G Metod 507.5).” Accessed: Sep. 15, 2023. [Online]. Available: https://www.laboratuvar.org/endustriyel/mil-std-810g-testleri/nem-testi-(mil-std-810g-metod-5075)/.
- [25] “GEOMET® Protection Principals”, Accessed: Sep. 15, 2023. [Online]. Available: www.nofmetalcoatings.com.
- [26] “Zinc-Nickel Electroplating Services | Plating Services | SPC.” Accessed: Sep. 15, 2023. [Online]. Available: https://www.sharrettsplating.com/coatings/zinc-nickel.