Ferrite-Based Hierarchical Nanostructures for Electrochemical Sensing: Synthesis, Interface Engineering, and Performance Insights
Yıl 2025,
Cilt: 10 Sayı: 1/2, 14 - 26, 29.12.2025
Iqra Khalid
,
Abdullah Faheem
,
Akbar Ali
Öz
A non-enzymatic choline biosensor was demonstrated with chitosan (CS) supported NiFe2O4 modified on a carbon paste electrode (CPE). NiFe2O4 is synthesized via the hydrothermal method to study the choline chloride (ChCl) behavior towards the distinctive performance of choline. The prepared sample with CPE. The synthesized NiFe2O4 was examined with different characterization techniques to confirm the formation of the specified material. X-ray diffraction (XRD), Fourier-Transmission Infrared spectroscopy (FTIR), and Raman Spectroscopy were used to optimize and evaluate the various properties of the prepared material. XRD confirmed the cubic inverse spinel crystal structure of NiFe2O4 with a crystallite size of 14nm, while FTIR spectra revealed the stretching and bending vibration over the IR frequency range, and modes confirmed through Raman spectra frequency range. The modified electrode of NiFe2O4/CS/CPE was used to perform electrochemical studies by voltammogram and evaluated through Cyclic voltammetry (CV). The CV curves taken at different working ranges (5-15μL) of potential 0.0- +1.0 V and the analyte signal of LoD (0.002μM), considering the S/N=3 across the current system, with the linear regression (R2) of 0.99. The prepared electrode showed a low (LoD) in the smaller range of the chloride choline and demonstrated a good response.
Etik Beyan
No conflict of interest was declared by the authors.
Destekleyen Kurum
We are thankful to the Higher Education Commission of Pakistan for the grant of this project (NPRU-15417) titled ‘Ternary nano biocomposites for the fabrication of a novel electrode for the detection of chemical biomarkers,’ and to the Department of Physics, COMSATS University Islamabad, for its support in this research work.
Kaynakça
-
[1] T. Ost Fracari, N.H. Lazzari, J. Chaves Ortiz, J. Arguello, V. Lavayen, Nickel ferrite nanoparticles on a carbonaceous matrix and their colorimetric assay for ascorbic acid detection, React. Kinet. Mech. Catal. 130 (2020) 463–476. https://doi.org/10.1007/s11144-020-01780-1.
-
[2] R. Madhuvilakku, S. Piraman, One-dimensional NiFe2O4 nanorods modified with sulfur-rich spherical carbon nanoparticles for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid, Microchim. Acta 186 (2019) 434. https://doi.org/10.1007/s00604-019-3496-4.
-
[3] H.Q. Alijani, S. Pourseyedi, M. Torkzadeh-Mahani, A. Seifalian, M. Khatami, Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency, Artif. Cells Nanomedicine Biotechnol. 48 (2020) 242–251. https://doi.org/10.1080/21691401.2019.1699830.
-
[4] F. Yalçıner, E. Çevik, M. Şenel, A. Baykal, Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite, Nano-Micro Lett. 3 (2011) 91–98. https://doi.org/10.1007/BF03353657.
-
[5] M.K. Shobana, Nanoferrites in biosensors – A review, Mater. Sci. Eng. B 272 (2021) 115344. https://doi.org/10.1016/j.mseb.2021.115344.
-
[6] P. Rahimi, Y. Joseph, Enzyme-based biosensors for choline analysis: A review, TrAC Trends Anal. Chem. 110 (2019) 367–374. https://doi.org/10.1016/j.trac.2018.11.035.
-
[7] Z. Zhang, X. Wang, X. Yang, A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics, The Analyst 136 (2011) 4960. https://doi.org/10.1039/c1an15602k.
-
[8] U. Kansakar, V. Trimarco, P. Mone, F. Varzideh, A. Lombardi, G. Santulli, Choline supplements: An update, Front. Endocrinol. 14 (2023) 1148166. https://doi.org/10.3389/fendo.2023.1148166.
-
[9] S. Pundir, N. Chauhan, J. Narang, C.S. Pundir, Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode, Anal. Biochem. 427 (2012) 26–32. https://doi.org/10.1016/j.ab.2012.04.027.
-
[10] A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, N. Azum, M.M. Rahman, S.B. Khan, S.A. Ghani, A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview, Appl. Biochem. Biotechnol. 169 (2013) 1927–1939. https://doi.org/10.1007/s12010-013-0099-0.
-
[11] A. Shadlaghani, M. Farzaneh, D. Kinser, R.C. Reid, Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes, Sensors 19 (2019) 447. https://doi.org/10.3390/s19030447.
-
[12] A. Al‐Shami, F. Amirghasemi, A. Soleimani, S. Khazaee Nejad, V. Ong, A. Berkmen, A. Ainla, M.P.S. Mousavi, SPOOC (Sensor for Periodic Observation of Choline): An Integrated Lab‐on‐a‐Spoon Platform for At‐Home Quantification of Choline in Infant Formula, Small 20 (2024) 2311745. https://doi.org/10.1002/smll.202311745.
-
[13] X. Mu, T.D. Evans, F. Zhang, ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction, Nat. Commun. 15 (2024) 5299. https://doi.org/10.1038/s41467-024-49579-1.
-
[14] K. Phasuksom, N. Thongwattana, N. Ariyasajjamongkol, A. Sirivat, Non-enzymatic sensor based on doped polyindole/multi-walled carbon nanotube for detecting neurotransmitter acetylcholine, J. Electroanal. Chem. 964 (2024) 118337. https://doi.org/10.1016/j.jelechem.2024.118337.
-
[15] Varnakavi. Naresh, N. Lee, A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors, Sensors 21 (2021) 1109. https://doi.org/10.3390/s21041109.
-
[16] A. Villalonga, A.M. Pérez-Calabuig, R. Villalonga, Electrochemical biosensors based on nucleic acid aptamers, Anal. Bioanal. Chem. 412 (2020) 55–72. https://doi.org/10.1007/s00216-019-02226-x.
-
[17] E.C. Welch, J.M. Powell, T.B. Clevinger, A.E. Fairman, A. Shukla, Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials, Adv. Funct. Mater. 31 (2021) 2104126. https://doi.org/10.1002/adfm.202104126.
-
[18] H.Y. Yang, Y. Li, D.S. Lee, Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications, Macromol. Rapid Commun. 41 (2020) 2000106. https://doi.org/10.1002/marc.202000106.
-
[19] J. An, M. Luo, M. Li, H. Cui, Y. Liu, Development of an advanced electrochemical biosensor for choline detection using MXene, MWCNT-AuNPs, and Fe3O4NPs, Microchem. J. 214 (2025) 114034. https://doi.org/10.1016/j.microc.2025.114034.
-
[20] M.D. Nguyen, S. Hoijang, R. Yarinia, M. Ariza Gonzalez, S. Mandal, Q.M. Tran, P. Chinwangso, T.R. Lee, Magnetic Iron Oxide Nanoparticles: Advances in Synthesis, Mechanistic Understanding, and Magnetic Property Optimization for Improved Biomedical Performance, Nanomaterials 15 (2025) 1500. https://doi.org/10.3390/nano15191500.
-
[21] A.O. Adeeyo, M.A. Alabi, J.A. Oyetade, T.T.I. Nkambule, B.B. Mamba, A.O. Oladipo, R. Makungo, T.A.M. Msagati, Magnetic Nanoparticles: Advances in Synthesis, Sensing, and Theragnostic Applications, Magnetochemistry 11 (2025) 9. https://doi.org/10.3390/magnetochemistry11020009.
-
[22] N.W. Mamdooh, I.M. Ibrahim, S.N.T. Al Rashid, Hydrothermal synthesis of spinel ferrite nanoparticles and study its effect on optical, structural and magnetic characterization, in: Baghdad, Iraq, 2025: p. 050042. https://doi.org/10.1063/5.0265654.
-
[23] K.K. Kadam, Synthesis Structural and Infrared Properties of Nickel Ferrite (NiFe2O4) Nanoparticles., Int. Res. J. Eng. Technol. IRJET 08 (n.d.).
-
[24] A.R.O. Rodrigues, I.T. Gomes, B.G. Almeida, J.P. Araújo, E.M.S. Castanheira, P.J.G. Coutinho, Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications, Phys. Chem. Chem. Phys. 17 (2015) 18011–18021. https://doi.org/10.1039/C5CP01894C.
-
[25] W. Ralph WG, The Chemical Catalog Company, in: Struct. Cryst., 1931.
-
[26] B. Sun, N. Wang, W. Hu, Synthesis of Novel NiFe2 O4 /Fe3 O4 Nanotube arrays as flexible negative electrodes for Supercapacitor Applications, IOP Conf. Ser. Earth Environ. Sci. 639 (2021) 012029. https://doi.org/10.1088/1755-1315/639/1/012029.
-
[27] J.A.C. De Paiva, M.P.F. Graça, J. Monteiro, M.A. Macedo, M.A. Valente, Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water, J. Alloys Compd. 485 (2009) 637–641. https://doi.org/10.1016/j.jallcom.2009.06.052.
-
[28] D.R.A. El-Hafiz, M.A. Ebiad, A.A.-E. Sakr, Ultrasonic-Assisted Nano-Nickel Ferrite Spinel Synthesis for Natural Gas Reforming, J. Inorg. Organomet. Polym. Mater. 31 (2021) 292–302. https://doi.org/10.1007/s10904-020-01718-z.
-
[29] R.B. Kamble, V. Varade, K.P. Ramesh, V. Prasad, Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles, AIP Adv. 5 (2015) 017119. https://doi.org/10.1063/1.4906101.
-
[30] J. Jacob, M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite, J. Appl. Phys. 107 (2010) 114310. https://doi.org/10.1063/1.3429202.
-
[31] Zampiva, R. Y. S., Kaufmann Jr, C. G., Venturini, J., dos Santos, L. M., Yamashita, G. H., da Cas Viegas, A., ... & Alves, A. K, Role of the fuel stoichiometry and post-treatment temperature on the spinel inversion and magnetic properties of NiFe2O4 nanoparticles produced by solution combustion synthesis, Mater. Res. Bull. 138 (n.d.).
-
[32] M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technol. 212 (2011) 80–88. https://doi.org/10.1016/j.powtec.2011.04.033.
-
[33] J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets, Appl. Surf. Sci. 254 (2008) 5844–5848. https://doi.org/10.1016/j.apsusc.2008.03.065.
-
[34] D. Guragain, B.K. Rai, S. Yoon, T.P. Poudel, S.C. Bhandari, S.R. Mishra, Effect of Terbium Ion Substitution in Inverse Spinel Nickel Ferrite: Structural and Magnetic Study, Magnetochemistry 6 (2020) 14. https://doi.org/10.3390/magnetochemistry6010014.
-
[35] M.I. Din, M. Javed, Z. Hussain, R. Khalid, S. Ameen, Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel, Eur. J. Sustain. Dev. Res. (2020). https://doi.org/10.29333/ejosdr/7900.
-
[36] B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C. Mahendrakumar, B. Sadashivamurthy, N. Dhananjaya, B.M. Sankarshan, S. Krishnaveni, K.V. Sathish, P.S.D. Gupta, Synthesis and characterization of multi functional nickel ferrite nano-particles for X-ray/gamma radiation shielding, display and antimicrobial applications, J. Phys. Chem. Solids 159 (2021) 110260. https://doi.org/10.1016/j.jpcs.2021.110260.
-
[37] S. Munir, M. Farooq Warsi, S. Zulfiqar, I. Ayman, S. Haider, I.A. Alsafari, P.O. Agboola, I. Shakir, Nickel ferrite/zinc oxide nanocomposite: Investigating the photocatalytic and antibacterial properties, J. Saudi Chem. Soc. 25 (2021) 101388. https://doi.org/10.1016/j.jscs.2021.101388.
-
[38] G.E. Uwaya, O.E. Fayemi, Enhanced Electrocatalytic Detection of Choline Based on CNTs and Metal Oxide Nanomaterials, Molecules 26 (2021) 6512. https://doi.org/10.3390/molecules26216512.
Ferrite-Based Hierarchical Nanostructures for Electrochemical Sensing: Synthesis, Interface Engineering, and Performance Insights
Yıl 2025,
Cilt: 10 Sayı: 1/2, 14 - 26, 29.12.2025
Iqra Khalid
,
Abdullah Faheem
,
Akbar Ali
Öz
A non-enzymatic choline biosensor was demonstrated with chitosan (CS) supported NiFe2O4 modified on a carbon paste electrode (CPE). NiFe2O4 is synthesized via the hydrothermal method to study the choline chloride (ChCl) behavior towards the distinctive performance of choline. The prepared sample with CPE. The synthesized NiFe2O4 was examined with different characterization techniques to confirm the formation of the specified material. X-ray diffraction (XRD), Fourier-Transmission Infrared spectroscopy (FTIR), and Raman Spectroscopy were used to optimize and evaluate the various properties of the prepared material. XRD confirmed the cubic inverse spinel crystal structure of NiFe2O4 with a crystallite size of 14nm, while FTIR spectra revealed the stretching and bending vibration over the IR frequency range, and modes confirmed through Raman spectra frequency range. The modified electrode of NiFe2O4/CS/CPE was used to perform electrochemical studies by voltammogram and evaluated through Cyclic voltammetry (CV). The CV curves taken at different working ranges (5-15μL) of potential 0.0- +1.0 V and the analyte signal of LoD (0.002μM), considering the S/N=3 across the current system, with the linear regression (R2) of 0.99. The prepared electrode showed a low (LoD) in the smaller range of the chloride choline and demonstrated a good response.
Etik Beyan
No conflict of interest was declared by the authors.
Destekleyen Kurum
We are thankful to the Higher Education Commission of Pakistan for the grant of this project (NPRU-15417) titled ‘Ternary nano biocomposites for the fabrication of a novel electrode for the detection of chemical biomarkers,’ and to the Department of Physics, COMSATS University Islamabad, for its support in this research work.
Kaynakça
-
[1] T. Ost Fracari, N.H. Lazzari, J. Chaves Ortiz, J. Arguello, V. Lavayen, Nickel ferrite nanoparticles on a carbonaceous matrix and their colorimetric assay for ascorbic acid detection, React. Kinet. Mech. Catal. 130 (2020) 463–476. https://doi.org/10.1007/s11144-020-01780-1.
-
[2] R. Madhuvilakku, S. Piraman, One-dimensional NiFe2O4 nanorods modified with sulfur-rich spherical carbon nanoparticles for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid, Microchim. Acta 186 (2019) 434. https://doi.org/10.1007/s00604-019-3496-4.
-
[3] H.Q. Alijani, S. Pourseyedi, M. Torkzadeh-Mahani, A. Seifalian, M. Khatami, Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency, Artif. Cells Nanomedicine Biotechnol. 48 (2020) 242–251. https://doi.org/10.1080/21691401.2019.1699830.
-
[4] F. Yalçıner, E. Çevik, M. Şenel, A. Baykal, Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite, Nano-Micro Lett. 3 (2011) 91–98. https://doi.org/10.1007/BF03353657.
-
[5] M.K. Shobana, Nanoferrites in biosensors – A review, Mater. Sci. Eng. B 272 (2021) 115344. https://doi.org/10.1016/j.mseb.2021.115344.
-
[6] P. Rahimi, Y. Joseph, Enzyme-based biosensors for choline analysis: A review, TrAC Trends Anal. Chem. 110 (2019) 367–374. https://doi.org/10.1016/j.trac.2018.11.035.
-
[7] Z. Zhang, X. Wang, X. Yang, A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics, The Analyst 136 (2011) 4960. https://doi.org/10.1039/c1an15602k.
-
[8] U. Kansakar, V. Trimarco, P. Mone, F. Varzideh, A. Lombardi, G. Santulli, Choline supplements: An update, Front. Endocrinol. 14 (2023) 1148166. https://doi.org/10.3389/fendo.2023.1148166.
-
[9] S. Pundir, N. Chauhan, J. Narang, C.S. Pundir, Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode, Anal. Biochem. 427 (2012) 26–32. https://doi.org/10.1016/j.ab.2012.04.027.
-
[10] A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, N. Azum, M.M. Rahman, S.B. Khan, S.A. Ghani, A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview, Appl. Biochem. Biotechnol. 169 (2013) 1927–1939. https://doi.org/10.1007/s12010-013-0099-0.
-
[11] A. Shadlaghani, M. Farzaneh, D. Kinser, R.C. Reid, Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes, Sensors 19 (2019) 447. https://doi.org/10.3390/s19030447.
-
[12] A. Al‐Shami, F. Amirghasemi, A. Soleimani, S. Khazaee Nejad, V. Ong, A. Berkmen, A. Ainla, M.P.S. Mousavi, SPOOC (Sensor for Periodic Observation of Choline): An Integrated Lab‐on‐a‐Spoon Platform for At‐Home Quantification of Choline in Infant Formula, Small 20 (2024) 2311745. https://doi.org/10.1002/smll.202311745.
-
[13] X. Mu, T.D. Evans, F. Zhang, ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction, Nat. Commun. 15 (2024) 5299. https://doi.org/10.1038/s41467-024-49579-1.
-
[14] K. Phasuksom, N. Thongwattana, N. Ariyasajjamongkol, A. Sirivat, Non-enzymatic sensor based on doped polyindole/multi-walled carbon nanotube for detecting neurotransmitter acetylcholine, J. Electroanal. Chem. 964 (2024) 118337. https://doi.org/10.1016/j.jelechem.2024.118337.
-
[15] Varnakavi. Naresh, N. Lee, A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors, Sensors 21 (2021) 1109. https://doi.org/10.3390/s21041109.
-
[16] A. Villalonga, A.M. Pérez-Calabuig, R. Villalonga, Electrochemical biosensors based on nucleic acid aptamers, Anal. Bioanal. Chem. 412 (2020) 55–72. https://doi.org/10.1007/s00216-019-02226-x.
-
[17] E.C. Welch, J.M. Powell, T.B. Clevinger, A.E. Fairman, A. Shukla, Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials, Adv. Funct. Mater. 31 (2021) 2104126. https://doi.org/10.1002/adfm.202104126.
-
[18] H.Y. Yang, Y. Li, D.S. Lee, Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications, Macromol. Rapid Commun. 41 (2020) 2000106. https://doi.org/10.1002/marc.202000106.
-
[19] J. An, M. Luo, M. Li, H. Cui, Y. Liu, Development of an advanced electrochemical biosensor for choline detection using MXene, MWCNT-AuNPs, and Fe3O4NPs, Microchem. J. 214 (2025) 114034. https://doi.org/10.1016/j.microc.2025.114034.
-
[20] M.D. Nguyen, S. Hoijang, R. Yarinia, M. Ariza Gonzalez, S. Mandal, Q.M. Tran, P. Chinwangso, T.R. Lee, Magnetic Iron Oxide Nanoparticles: Advances in Synthesis, Mechanistic Understanding, and Magnetic Property Optimization for Improved Biomedical Performance, Nanomaterials 15 (2025) 1500. https://doi.org/10.3390/nano15191500.
-
[21] A.O. Adeeyo, M.A. Alabi, J.A. Oyetade, T.T.I. Nkambule, B.B. Mamba, A.O. Oladipo, R. Makungo, T.A.M. Msagati, Magnetic Nanoparticles: Advances in Synthesis, Sensing, and Theragnostic Applications, Magnetochemistry 11 (2025) 9. https://doi.org/10.3390/magnetochemistry11020009.
-
[22] N.W. Mamdooh, I.M. Ibrahim, S.N.T. Al Rashid, Hydrothermal synthesis of spinel ferrite nanoparticles and study its effect on optical, structural and magnetic characterization, in: Baghdad, Iraq, 2025: p. 050042. https://doi.org/10.1063/5.0265654.
-
[23] K.K. Kadam, Synthesis Structural and Infrared Properties of Nickel Ferrite (NiFe2O4) Nanoparticles., Int. Res. J. Eng. Technol. IRJET 08 (n.d.).
-
[24] A.R.O. Rodrigues, I.T. Gomes, B.G. Almeida, J.P. Araújo, E.M.S. Castanheira, P.J.G. Coutinho, Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications, Phys. Chem. Chem. Phys. 17 (2015) 18011–18021. https://doi.org/10.1039/C5CP01894C.
-
[25] W. Ralph WG, The Chemical Catalog Company, in: Struct. Cryst., 1931.
-
[26] B. Sun, N. Wang, W. Hu, Synthesis of Novel NiFe2 O4 /Fe3 O4 Nanotube arrays as flexible negative electrodes for Supercapacitor Applications, IOP Conf. Ser. Earth Environ. Sci. 639 (2021) 012029. https://doi.org/10.1088/1755-1315/639/1/012029.
-
[27] J.A.C. De Paiva, M.P.F. Graça, J. Monteiro, M.A. Macedo, M.A. Valente, Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water, J. Alloys Compd. 485 (2009) 637–641. https://doi.org/10.1016/j.jallcom.2009.06.052.
-
[28] D.R.A. El-Hafiz, M.A. Ebiad, A.A.-E. Sakr, Ultrasonic-Assisted Nano-Nickel Ferrite Spinel Synthesis for Natural Gas Reforming, J. Inorg. Organomet. Polym. Mater. 31 (2021) 292–302. https://doi.org/10.1007/s10904-020-01718-z.
-
[29] R.B. Kamble, V. Varade, K.P. Ramesh, V. Prasad, Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles, AIP Adv. 5 (2015) 017119. https://doi.org/10.1063/1.4906101.
-
[30] J. Jacob, M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite, J. Appl. Phys. 107 (2010) 114310. https://doi.org/10.1063/1.3429202.
-
[31] Zampiva, R. Y. S., Kaufmann Jr, C. G., Venturini, J., dos Santos, L. M., Yamashita, G. H., da Cas Viegas, A., ... & Alves, A. K, Role of the fuel stoichiometry and post-treatment temperature on the spinel inversion and magnetic properties of NiFe2O4 nanoparticles produced by solution combustion synthesis, Mater. Res. Bull. 138 (n.d.).
-
[32] M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technol. 212 (2011) 80–88. https://doi.org/10.1016/j.powtec.2011.04.033.
-
[33] J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets, Appl. Surf. Sci. 254 (2008) 5844–5848. https://doi.org/10.1016/j.apsusc.2008.03.065.
-
[34] D. Guragain, B.K. Rai, S. Yoon, T.P. Poudel, S.C. Bhandari, S.R. Mishra, Effect of Terbium Ion Substitution in Inverse Spinel Nickel Ferrite: Structural and Magnetic Study, Magnetochemistry 6 (2020) 14. https://doi.org/10.3390/magnetochemistry6010014.
-
[35] M.I. Din, M. Javed, Z. Hussain, R. Khalid, S. Ameen, Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel, Eur. J. Sustain. Dev. Res. (2020). https://doi.org/10.29333/ejosdr/7900.
-
[36] B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C. Mahendrakumar, B. Sadashivamurthy, N. Dhananjaya, B.M. Sankarshan, S. Krishnaveni, K.V. Sathish, P.S.D. Gupta, Synthesis and characterization of multi functional nickel ferrite nano-particles for X-ray/gamma radiation shielding, display and antimicrobial applications, J. Phys. Chem. Solids 159 (2021) 110260. https://doi.org/10.1016/j.jpcs.2021.110260.
-
[37] S. Munir, M. Farooq Warsi, S. Zulfiqar, I. Ayman, S. Haider, I.A. Alsafari, P.O. Agboola, I. Shakir, Nickel ferrite/zinc oxide nanocomposite: Investigating the photocatalytic and antibacterial properties, J. Saudi Chem. Soc. 25 (2021) 101388. https://doi.org/10.1016/j.jscs.2021.101388.
-
[38] G.E. Uwaya, O.E. Fayemi, Enhanced Electrocatalytic Detection of Choline Based on CNTs and Metal Oxide Nanomaterials, Molecules 26 (2021) 6512. https://doi.org/10.3390/molecules26216512.