Molecular Docking Study of Midostaurin, an Effective Drug in the Treatment of Myeloid Leukemia
Yıl 2023,
Cilt: 8 Sayı: 1, 2 - 10, 30.06.2023
Sefa Çelik
,
Gözde Yılmaz
,
Ayşen Özel
,
Sevim Akyüz
Öz
Midostaurin (C35H30N4O4) is a multi-target kinase inhibitor used to treat some types of acute myeloid leukemia in combination with other chemotherapy agents. Firstly, the structural preferences of the Midostaurin were evaluated due to the importance to determine the most stable conformer of a bioactive molecule to elucidate its bioactivity. The conformational analysis of the Midostaurin molecule was performed using the PM3, a semi-experimental method. The three most stable conformers and their relative energies were determined. The Epidermal Growth Factor receptor (EGFR) is an integral membrane protein, and its over-expression is associated with the development of a wide variety of tumors. For this reason, EGFR inhibitors can act as anticancer drugs as preventing the growth of EGFR-expressing tumors and increasing the survival rates of patients. On the other hand, DNA is an important target for anticancer drugs. To elucidate the anticancer properties of Midostaurin, the molecular docking simulations were performed against EGFR and DNA targets. The binding modes and binding affinities of the ligand-target receptor complexes were determined. Midostaurin showed strong binding affinity to DNA (G = -8.6 kcal/mol) and EGFR (G = - 9.6 kcal/mol). The results revealed the significant anti-tumor effect of Midostaurin.
Destekleyen Kurum
Research funds of Istanbul University
Kaynakça
- [1] Prada-Arismendy, J., Arroyave, J. C., Röthlisberger, S. 2017. Molecular biomarkers in acute myeloid leukemia, Blood reviews 31(1), 63-76.
- [2] Kumar, C. C. 2011. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia, Genes & cancer 2(2), 95-107.
- [3] Rubnitz, J. E., Gibson, B., & Smith, F. O. 2008. Acute myeloid leukemia, Pediatric clinics of North America 55(1), 21-51.
- [4] Schiller, G. J. 2014. Evolving treatment strategies in patients with high-risk acute myeloid leukemia, Leukemia & lymphoma 55(11), 2438-2448.
- [5] Absalon, M. J., Smith, F. O. 2009. Treatment strategies for pediatric acute myeloid leukemia, Expert opinion on pharmacotherapy 10(1), 57-79.
- [6] Stone, R. M., Mandrekar, S. J., Sanford, B. L., Laumann, K., Geyer, S., Bloomfield, C. D., Thiede, C., Prior, T.W., Döhner, K., Marcucci, G., Lo-Coco, F., Klisovic, R.B., Wei, A., Sierra, J., Sanz, M.A., Brandwein, J.M., de Witte, T., Niederwieser, D., Appelbaum, F.R., Medeiros, B.C., Tallman, M.S., Krauter, J., Schlenk, R.F., Ganser, A., Serve, H., Ehninger, G., Amadori, S., Larson, R.A., Döhner, H. 2017. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation, New England Journal of Medicine 377(5), 454-464.
- [7] Schlenk, R. F., Weber, D., Fiedler, W., Salih, H. R., Wulf, G., .... Döhner, H. 2019. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD, Blood 133(8), 840-851.
- [8] Levis, M. 2017. Midostaurin approved for FLT3-mutated AML, Blood 129(26), 3403-3406.
- [9] Stemler, J., Koehler, P., Maurer, C., Müller, C., Cornely, O. A. 2020. Antifungal prophylaxis and novel drugs in acute myeloid leukemia: the midostaurin and posaconazole dilemma, Annals of Hematology 99(7), 1429-1440.
- [10] Gallogly, M. M., Lazarus, H. M. 2016. Midostaurin: an emerging treatment for acute myeloid leukemia patients, Journal of Blood Medicine 7, 73.
- [11] Berger, T., Rozovski, U., Moshe, Y., Yaari, S., Frisch, A., Hellmann, I., Apel, A., Aviram, A., Koren-Michowitz, M., Yeshurun, M., Ram, R., Raanani, P., Ofran, Y., Wolach, O. 2019. Midostaurin in combination with intensive chemotherapy is safe and associated with improved remission rates and higher transplantation rates in first remission-a multi-center historical control study, Annals of hematology 98(12), 2711-2717.
- [12] Patil, Y., Amitay, Y., Ohana, P., Shmeeda, H., Gabizon, A. 2016. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity, Journal of Controlled Release 225, 87-95.
- [13] Michalska, M., Schultze-Seemann, S., Bogatyreva, L., Hauschke, D., Wetterauer, U., Wolf, P. 2016. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer, Oncotarget 7(16), 22531.
- [14] Olsen, I. H., Knigge, U., Federspiel, B., Hansen, C. P., Skov, A., Kjær, A., Langer, S. W. 2014. Topotecan monotherapy in heavily pretreated patients with progressive advanced stage neuroendocrine carcinomas, Journal of Cancer 5(8), 628.
- [15] Pomerantz, R. G., & Grandis, J. R. 2004. The epidermal growth factor receptor signaling network in head and neck carcinogenesis and implications for targeted therapy, In Seminars in oncology 31(6), 734-743.
- [16] Shiomitsu, K., Johnson, C. L., Malarkey, D. E., Pruitt, A. F., Thrall, D. E. 2009. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours, Veterinary and comparative oncology 7(2), 106-114.
- [17] Higgins, R. J., Dickinson, P. J., LeCouteur, R. A., Bollen, A. W., Wang, H., Wang, H., Corely, L.J., Moore, L.M., Zang, W., Fuller, G. N. 2010. Spontaneous canine gliomas: overexpression of EGFR, PDGFRα and IGFBP2 demonstrated by tissue microarray immunophenotyping, Journal of neuro-oncology 98(1), 49-55.
- [18] Lee, H. J., Xu, X., Choe, G., Chung, D. H., Seo, J. W., Lee, J. H., Lee, C.T., Jheon, S., Sung, S.W., Chung, J. H. 2010. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas: Comparison of four commercially available antibodies by immunohistochemistry and fluorescence in situ hybridization study, Lung Cancer 68(3), 375-382.
- [19] Duan, L., Wu, R., Ye, L., Wang, H., Yang, X., Zhang, Y., Chen, X., Zuo, G., Zhang, Y., Weng, Y., Luo, J., Tang, M., Shi, Q., He, T., Zhou, L. 2013. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway, PloS one 8(4), e62092.
- [20] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., ... Head-Gordon, M. 2006. Advances in methods and algorithms in a modern quantum chemistry program package, Physical Chemistry Chemical Physics 8(27), 3172-3191.
- [21] Stewart, J. J. 1989a. Optimization of parameters for semiempirical methods I. Method, Journal of computational chemistry 10(2), 209-220.
- [22] Stewart, J. J.1989b. Optimization of parameters for semiempirical methods II. Applications, Journal of computational chemistry 10(2), 221-264.
- [23] Stewart, J. J.1991. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi, Journal of computational chemistry 12(3), 320-341.
- [24] Stewart, J. J. 2004. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements, Journal of Molecular Modeling 10(2), 155-164.
- [25] Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., Kokkonen, P., Brezovsky, J., Strnad, O., Stourac, J., Pavelka, A., Manak, M., Damborsky,J., Kozlikova, B. 2018. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories, Bioinformatics 34(20), 3586-3588.
- [26] Trott, O., & Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of computational chemistry 31(2), 455-461.
- [27] El Fitori, J., Su, Y., Büchler, P., Ludwig, R., Giese, N. A., Büchler, M. W., Quentmeier, H., Hines, O.J., Herr, I., Friess, H. 2007. PKC 412 small‐molecule tyrosine kinase inhibitor: Single‐compound therapy for pancreatic cancer, Cancer 110(7), 1457-1468.
- [28] Stone, R. M., Fischer, T., Paquette, R., Schiller, G., Schiffer, C. A., Ehninger, G.,Cortes, j., Kantarjian, H.M., DeAngelo,D.J., Huntsman-Labed, A., Dutreix, C., del Corral, A., Giles, F. 2012. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia, Leukemia 26(9), 2061-2068.
- [29] Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R. E. 1981. Structure of a B-DNA dodecamer:Conformation and Dynamics, Proceedings of the National Academy of Sciences 78(4), 2179–2183.
- [30] Akalin, E., Celik, S., Akyuz, S. 2020. Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil, Journal of Applied Spectroscopy 86(6), 975-985.
- [31] Celik, S., Yilmaz, G., Ozel, A. E., Akyuz, S. 2022. Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide, Journal of Biomolecular Structure and Dynamics 40(2), 660-672.
- [32] Celik, S., Demirag, A.D., Arslan, S., Ozel, A.E.., Akyuz, S. 2022. Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule, Open Journal of Nano 7(1), 1-9.
- [33] Eğlence-Bakır, S., Celik, S., Şahin, M., Ozel, A. E., Akyuz, S., & Ülküseven, B. 2021. Synthesis, molecular modelling, FT-IR, Raman and NMR characterization, molecular docking and ADMET study of new nickel (II) complex with an N4-tetradentate thiosemicarbazone, Journal of Biomolecular Structure and Dynamics 39(12), 4212-4224.
- [34] Zhang, X., Gureasko, J., Shen, K., Cole, P. A., Kuriyan, J. 2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor, Cell 125(6), 1137-1149.
- [35] Bahmani, A., Tanzadehpanah, H., Hosseinpour Moghadam, N., & Saidijam, M. (2021). Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Molecular Diversity, 25(2), 949-965.
- [36] Mishra, A., & Dey, S. (2019). Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules, 9(11), 740.
- [37] Chandregowda, V., Kush, A. K., & Reddy, G. C. (2009). Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. European journal of medicinal chemistry, 44(7), 3046-3055.
- [38] Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., Wu, J.W., Berry, E.A.., Yang, G. F. 2012. Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex, Journal of the American Chemical Society 134(27), 11168-11176.
- [39] Cheron, N., Jasty, N., Shakhnovich, E. I. 2016. OpenGrowth: an automated and rational algorithm for finding new protein ligands, Journal of medicinal chemistry 59(9), 4171-4188.
- [40] Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., Yang, G. F. 2016. ACFIS: a web server for fragment-based drug discovery, Nucleic acids research 44(W1), W550-W556.
- [41] Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., Hao, G.F., Yang, G. F. 2018. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery, Journal of chemical information and modeling 58(9), 1725-1730.
- [42] Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y.,Zhu, F., Hou, T. 2019. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods, Bioinformatics 35(10), 1777-1779.
- [43] Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., Hou, T. 2019. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design, Chemical reviews 119(16), 9478-9.
Miyeloid Lösemi Tedavisinde Etkili Bir İlaç Olan Midostaurinin Moleküler Kenetlenme Çalışması
Yıl 2023,
Cilt: 8 Sayı: 1, 2 - 10, 30.06.2023
Sefa Çelik
,
Gözde Yılmaz
,
Ayşen Özel
,
Sevim Akyüz
Öz
Midostaurin (C35H30N4O4), diğer kemoterapi ajanları ile birlikte bazı akut miyeloid lösemi tiplerini tedavi etmek için kullanılan multi-target kinaz inhibitörüdür. Biyoaktif bir molekülün biyoaktivitesini gösterdiği en kararlı konformerinin belirlenmesinin önemi dolayısıyla ilk olarak Midostaurin’in yapısal tercihleri bulunup değerlendirilmiştir. Midostaurin molekülünün konformasyonel analizi, yarı deneysel bir metot olan PM3 kullanılarak yapılmıştır. En kararlı üç konformer ve bunların bağıl enerjileri belirlenmiştir. Bütünleyici bir zar proteini olan Epitermal Büyüme faktörü reseptörü (EGFR) ve aşırı ekspresyonu, çok çeşitli tümörlerin gelişimi ile ilişkilidir. Bu nedenle, EGFR inhibitörleri, EGFR eksprese eden tümörlerin büyümesini önleyerek ve hastaların hayatta kalma oranlarını artırarak antikanser ilaçlar olarak işlev görebilir. Ek olarak, DNA antikanser ilaçlar için önemli bir hedeftir. Midostaurin’in antikanser özelliklerini aydınlatmak için EGFR ve DNA’ya karşı moleküler kenetlenme simülasyonları yapılmıştır. Ligand-hedef reseptör komplekslerinin bağlanma modları ve bağlanma afiniteleri belirlenmiştir. Midostaurin, DNA (ΔG = -8.6 kcal/mol) ve EGFR (ΔG = - 9.6 kcal/mol) ile güçlü bağlanma afinitesi göstermiştir. Sonuçlar, Midostaurin'in önemli anti-tümör etkisini ortaya çıkarmıştır.
Kaynakça
- [1] Prada-Arismendy, J., Arroyave, J. C., Röthlisberger, S. 2017. Molecular biomarkers in acute myeloid leukemia, Blood reviews 31(1), 63-76.
- [2] Kumar, C. C. 2011. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia, Genes & cancer 2(2), 95-107.
- [3] Rubnitz, J. E., Gibson, B., & Smith, F. O. 2008. Acute myeloid leukemia, Pediatric clinics of North America 55(1), 21-51.
- [4] Schiller, G. J. 2014. Evolving treatment strategies in patients with high-risk acute myeloid leukemia, Leukemia & lymphoma 55(11), 2438-2448.
- [5] Absalon, M. J., Smith, F. O. 2009. Treatment strategies for pediatric acute myeloid leukemia, Expert opinion on pharmacotherapy 10(1), 57-79.
- [6] Stone, R. M., Mandrekar, S. J., Sanford, B. L., Laumann, K., Geyer, S., Bloomfield, C. D., Thiede, C., Prior, T.W., Döhner, K., Marcucci, G., Lo-Coco, F., Klisovic, R.B., Wei, A., Sierra, J., Sanz, M.A., Brandwein, J.M., de Witte, T., Niederwieser, D., Appelbaum, F.R., Medeiros, B.C., Tallman, M.S., Krauter, J., Schlenk, R.F., Ganser, A., Serve, H., Ehninger, G., Amadori, S., Larson, R.A., Döhner, H. 2017. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation, New England Journal of Medicine 377(5), 454-464.
- [7] Schlenk, R. F., Weber, D., Fiedler, W., Salih, H. R., Wulf, G., .... Döhner, H. 2019. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD, Blood 133(8), 840-851.
- [8] Levis, M. 2017. Midostaurin approved for FLT3-mutated AML, Blood 129(26), 3403-3406.
- [9] Stemler, J., Koehler, P., Maurer, C., Müller, C., Cornely, O. A. 2020. Antifungal prophylaxis and novel drugs in acute myeloid leukemia: the midostaurin and posaconazole dilemma, Annals of Hematology 99(7), 1429-1440.
- [10] Gallogly, M. M., Lazarus, H. M. 2016. Midostaurin: an emerging treatment for acute myeloid leukemia patients, Journal of Blood Medicine 7, 73.
- [11] Berger, T., Rozovski, U., Moshe, Y., Yaari, S., Frisch, A., Hellmann, I., Apel, A., Aviram, A., Koren-Michowitz, M., Yeshurun, M., Ram, R., Raanani, P., Ofran, Y., Wolach, O. 2019. Midostaurin in combination with intensive chemotherapy is safe and associated with improved remission rates and higher transplantation rates in first remission-a multi-center historical control study, Annals of hematology 98(12), 2711-2717.
- [12] Patil, Y., Amitay, Y., Ohana, P., Shmeeda, H., Gabizon, A. 2016. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity, Journal of Controlled Release 225, 87-95.
- [13] Michalska, M., Schultze-Seemann, S., Bogatyreva, L., Hauschke, D., Wetterauer, U., Wolf, P. 2016. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer, Oncotarget 7(16), 22531.
- [14] Olsen, I. H., Knigge, U., Federspiel, B., Hansen, C. P., Skov, A., Kjær, A., Langer, S. W. 2014. Topotecan monotherapy in heavily pretreated patients with progressive advanced stage neuroendocrine carcinomas, Journal of Cancer 5(8), 628.
- [15] Pomerantz, R. G., & Grandis, J. R. 2004. The epidermal growth factor receptor signaling network in head and neck carcinogenesis and implications for targeted therapy, In Seminars in oncology 31(6), 734-743.
- [16] Shiomitsu, K., Johnson, C. L., Malarkey, D. E., Pruitt, A. F., Thrall, D. E. 2009. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours, Veterinary and comparative oncology 7(2), 106-114.
- [17] Higgins, R. J., Dickinson, P. J., LeCouteur, R. A., Bollen, A. W., Wang, H., Wang, H., Corely, L.J., Moore, L.M., Zang, W., Fuller, G. N. 2010. Spontaneous canine gliomas: overexpression of EGFR, PDGFRα and IGFBP2 demonstrated by tissue microarray immunophenotyping, Journal of neuro-oncology 98(1), 49-55.
- [18] Lee, H. J., Xu, X., Choe, G., Chung, D. H., Seo, J. W., Lee, J. H., Lee, C.T., Jheon, S., Sung, S.W., Chung, J. H. 2010. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas: Comparison of four commercially available antibodies by immunohistochemistry and fluorescence in situ hybridization study, Lung Cancer 68(3), 375-382.
- [19] Duan, L., Wu, R., Ye, L., Wang, H., Yang, X., Zhang, Y., Chen, X., Zuo, G., Zhang, Y., Weng, Y., Luo, J., Tang, M., Shi, Q., He, T., Zhou, L. 2013. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway, PloS one 8(4), e62092.
- [20] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., ... Head-Gordon, M. 2006. Advances in methods and algorithms in a modern quantum chemistry program package, Physical Chemistry Chemical Physics 8(27), 3172-3191.
- [21] Stewart, J. J. 1989a. Optimization of parameters for semiempirical methods I. Method, Journal of computational chemistry 10(2), 209-220.
- [22] Stewart, J. J.1989b. Optimization of parameters for semiempirical methods II. Applications, Journal of computational chemistry 10(2), 221-264.
- [23] Stewart, J. J.1991. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi, Journal of computational chemistry 12(3), 320-341.
- [24] Stewart, J. J. 2004. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements, Journal of Molecular Modeling 10(2), 155-164.
- [25] Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., Kokkonen, P., Brezovsky, J., Strnad, O., Stourac, J., Pavelka, A., Manak, M., Damborsky,J., Kozlikova, B. 2018. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories, Bioinformatics 34(20), 3586-3588.
- [26] Trott, O., & Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of computational chemistry 31(2), 455-461.
- [27] El Fitori, J., Su, Y., Büchler, P., Ludwig, R., Giese, N. A., Büchler, M. W., Quentmeier, H., Hines, O.J., Herr, I., Friess, H. 2007. PKC 412 small‐molecule tyrosine kinase inhibitor: Single‐compound therapy for pancreatic cancer, Cancer 110(7), 1457-1468.
- [28] Stone, R. M., Fischer, T., Paquette, R., Schiller, G., Schiffer, C. A., Ehninger, G.,Cortes, j., Kantarjian, H.M., DeAngelo,D.J., Huntsman-Labed, A., Dutreix, C., del Corral, A., Giles, F. 2012. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia, Leukemia 26(9), 2061-2068.
- [29] Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R. E. 1981. Structure of a B-DNA dodecamer:Conformation and Dynamics, Proceedings of the National Academy of Sciences 78(4), 2179–2183.
- [30] Akalin, E., Celik, S., Akyuz, S. 2020. Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil, Journal of Applied Spectroscopy 86(6), 975-985.
- [31] Celik, S., Yilmaz, G., Ozel, A. E., Akyuz, S. 2022. Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide, Journal of Biomolecular Structure and Dynamics 40(2), 660-672.
- [32] Celik, S., Demirag, A.D., Arslan, S., Ozel, A.E.., Akyuz, S. 2022. Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule, Open Journal of Nano 7(1), 1-9.
- [33] Eğlence-Bakır, S., Celik, S., Şahin, M., Ozel, A. E., Akyuz, S., & Ülküseven, B. 2021. Synthesis, molecular modelling, FT-IR, Raman and NMR characterization, molecular docking and ADMET study of new nickel (II) complex with an N4-tetradentate thiosemicarbazone, Journal of Biomolecular Structure and Dynamics 39(12), 4212-4224.
- [34] Zhang, X., Gureasko, J., Shen, K., Cole, P. A., Kuriyan, J. 2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor, Cell 125(6), 1137-1149.
- [35] Bahmani, A., Tanzadehpanah, H., Hosseinpour Moghadam, N., & Saidijam, M. (2021). Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Molecular Diversity, 25(2), 949-965.
- [36] Mishra, A., & Dey, S. (2019). Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules, 9(11), 740.
- [37] Chandregowda, V., Kush, A. K., & Reddy, G. C. (2009). Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. European journal of medicinal chemistry, 44(7), 3046-3055.
- [38] Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., Wu, J.W., Berry, E.A.., Yang, G. F. 2012. Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex, Journal of the American Chemical Society 134(27), 11168-11176.
- [39] Cheron, N., Jasty, N., Shakhnovich, E. I. 2016. OpenGrowth: an automated and rational algorithm for finding new protein ligands, Journal of medicinal chemistry 59(9), 4171-4188.
- [40] Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., Yang, G. F. 2016. ACFIS: a web server for fragment-based drug discovery, Nucleic acids research 44(W1), W550-W556.
- [41] Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., Hao, G.F., Yang, G. F. 2018. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery, Journal of chemical information and modeling 58(9), 1725-1730.
- [42] Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y.,Zhu, F., Hou, T. 2019. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods, Bioinformatics 35(10), 1777-1779.
- [43] Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., Hou, T. 2019. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design, Chemical reviews 119(16), 9478-9.