Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels

Yıl 2024, Cilt: 9 Sayı: 2, 106 - 118, 29.12.2024
https://doi.org/10.56171/ojn.1488770

Öz

Chitosan hydrogels have gained popularity in a variety of industrial applications due to their biocompatibility, biodegradability, and varied physicochemical features. Understanding these hydrogels' swelling dynamics and diffusion processes is crucial for improving their efficacy in drug delivery, tissue engineering, and wound healing. This work aims to examine the processes of swelling and diffusion in chemically crosslinked porous chitosan hydrogels. The swelling kinetics of the hydrogels were investigated using Fick's diffusion mathematical model to determine the effects of different molecular weights of chitosan on the swelling behavior at pH: 2.0, pH: 5.6 and pH: 7.4. Chitosan hydrogels cross-linked with glutaraldeyhde showed Super Case II Diffusion according to Fick's laws of diffusion.

Destekleyen Kurum

This study was supported with Yalova University BAPKO Graduate Thesis Project (2020/YL/0025).

Proje Numarası

Yalova University BAPKO Graduate Thesis Project (2020/YL/0025).

Kaynakça

  • E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” Journal of Advanced Research, vol. 6, no. 2. 2015. doi: 10.1016/j.jare.2013.07.006.
  • N. Sarhan, E. G. Arafa, N. Elgedawy, K. N. M. Elsayed, and F. Mohamed, “Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-58875-1.
  • A. Martínez-Ruvalcaba, J. C. Sánchez-Díaz, F. Becerra, L. E. Cruz-Barba, and A. González-Álvarez, “Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels,” Express Polym Lett, vol. 3, no. 1, 2009, doi: 10.3144/expresspolymlett.2009.5.
  • M. A. Gámiz-González et al., “Determining the influence of N-acetylation on water sorption in chitosan films,” Carbohydr Polym, vol. 133, 2015, doi: 10.1016/j.carbpol.2015.07.020.
  • A. Dilmi, T. Bartil, N. Yahia, and Z. Benneghmouche, “Hydrogels based on 2-hydroxyethylmethacrylate and chitosan: Preparation, swelling behavior, and drug delivery,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 63, no. 10, 2014, doi: 10.1080/00914037.2013.854221.
  • K. C. Gupta and F. H. Jabrail, “Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman,” Carbohydr Res, vol. 342, no. 15, 2007, doi: 10.1016/j.carres.2007.06.009.
  • M. A. Gámiz-González, D. M. Correia, S. Lanceros-Mendez, V. Sencadas, J. L. Gómez Ribelles, and A. Vidaurre, “Kinetic study of thermal degradation of chitosan as a function of deacetylation degree,” Carbohydr Polym, vol. 167, pp. 52–58, 2017, doi: 10.1016/j.carbpol.2017.03.020.
  • H. S. Kaçoğlu, Ö. Ceylan, and M. Çelebi, “Comparative study of the effect of cross-linking degree on chitosan hydrogels synthesized with low and medium molecular weight chitosan,” Polym Eng Sci, Mar. 2024, doi: 10.1002/pen.26619.
  • H. Y. Zhou, X. G. Chen, M. Kong, C. S. Liu, D. S. Cha, and J. F. Kennedy, “Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system,” Carbohydr Polym, vol. 73, no. 2, pp. 265–273, 2008, doi: 10.1016/j.carbpol.2007.11.026.
  • O. Akakuru and B. O. Isiuku, “Chitosan Hydrogels and their Glutaraldehyde-Crosslinked Counterparts as Potential Drug Release and Tissue Engineering Systems - Synthesis, Characterization, Swelling Kinetics and Mechanism,” J Phys Chem Biophys, vol. 07, no. 03, 2017, doi: 10.4172/2161-0398.1000256.
  • J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, and R. Gurny, “Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 19–34, 2004, doi: 10.1016/S0939-6411(03)00161-9.
  • F. Croisier and C. Jérôme, “Chitosan-based biomaterials for tissue engineering,” European Polymer Journal, vol. 49, no. 4. 2013. doi: 10.1016/j.eurpolymj.2012.12.009.
  • H. C. Yang and M. H. Hon, “The effect of the degree of deacetylation of chitosan nanoparticles and its characterization and encapsulation efficiency on drug delivery,” Polymer - Plastics Technology and Engineering, vol. 49, no. 12, 2010, doi: 10.1080/03602559.2010.482076.
  • J. Fu, F. Yang, and Z. Guo, “The chitosan hydrogels: from structure to function,” New Journal of Chemistry, vol. 42, no. 21, pp. 17162–17180, 2018, doi: 10.1039/C8NJ03482F.
  • H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, “Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review,” Carbohydr Polym, vol. 199, no. June, pp. 445–460, 2018, doi: 10.1016/j.carbpol.2018.06.114.
  • S. Nangia, D. N. Katyal, and S. G. Warkar, “Kinetics , absorption and diffusion mechanism of crosslinked Chitosan Kinetics , absorption and diffusion mechanism of crosslinked Chitosan Hydrogels,” Indian Journal of Engineering and Materials Sciences, vol. 28, no. October, pp. 374–384, 2021.
  • “Merck Laboratuvar El Kitabı,” 2007.
  • S. Jin, F. Bian, M. Liu, S. Chen, and H. Liu, “Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pote sizes prepared by a freeze treatment,” Polym Int, vol. 58, no. 2, pp. 142–148, 2009, doi: 10.1002/pi.2504.
  • Y. Zhou et al., “Photopolymerized water-soluble maleilated chitosan/methacrylated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds,” Int J Biol Macromol, vol. 106, pp. 227–233, 2018, doi: 10.1016/j.ijbiomac.2017.08.002.
  • A. Jastram, T. Lindner, C. Luebbert, G. Sadowski, and U. Kragl, “Swelling and diffusion in polymerized ionic liquids-based hydrogels,” Polymers (Basel), vol. 13, no. 11, p. 1834, 2021, doi: 10.3390/polym13111834.
  • K. Zielińska, W. Kujawski, and A. G. Chostenko, “Chitosan hydrogel membranes for pervaporative dehydration of alcohols,” Sep Purif Technol, vol. 83, no. 1, pp. 114–120, 2011, doi: 10.1016/j.seppur.2011.09.023.
  • R. Silva, G. Silva, O. Coutinho, J. Mano, and R. L. Reis, “Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes,” J Mater Sci Mater Med, vol. 15, no. 10, pp. 1105–1112, 2004, doi: 10.1023/B:JMSM.0000046392.44911.46.
  • K. Wegrzynowska-Drzymalska et al., “Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications,” Materials, vol. 13, no. 15, pp. 1–27, 2020, doi: 10.3390/ma13153413.
  • S. J. Kim, S. U. Ryon Shin, N. G. Kim, and S. I. Kim, “Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide),” Journal of Macromolecular Science - Pure and Applied Chemistry, vol. 42 A, no. 8, pp. 1073–1083, 2005, doi: 10.1081/MA-200065934.
  • T. Erşen Dudu and D. Alpaslan, “Eco-friendly and biodegradable dimethylacrylamide/starch hydrogels for controlled release of urea and its water retention,” MANAS Journal of Engineering, vol. 10, no. 2, pp. 116–128, 2022, doi: 10.51354/mjen.1194756.
  • E. Mirzaei B., A. Ramazani, M. Shafiee, and M. Danaei, “Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 62, no. 11, pp. 605–611, 2013, doi: 10.1080/00914037.2013.769165.

Kimyasal Olarak Çapraz Bağlı Gözenekli Kitosan Hidrojellerin Şişme Kinetiği ve Difüzyon Mekanizmalarının Belirlenmesi

Yıl 2024, Cilt: 9 Sayı: 2, 106 - 118, 29.12.2024
https://doi.org/10.56171/ojn.1488770

Öz

Kitosan hidrojelleri biyouyumlulukları, biyobozunurlukları ve çeşitli fizikokimyasal özelliklerinden dolayı çeşitli endüstriyel uygulamalarda popülerlik kazanmıştır. Bu hidrojellerin şişme dinamiklerini ve difüzyon süreçlerini anlamak, ilaç dağıtımı, doku mühendisliği ve yara iyileşmesindeki etkinliklerinin arttırılması açısından çok önemlidir. Bu çalışma kimyasal olarak çapraz bağlı gözenekli kitosan hidrojellerde şişme ve difüzyon süreçlerini incelemeyi amaçlamaktadır. Hidrojellerin şişme kinetiği, pH: 2.0, pH: 5.6 ve pH: 7.4’ te kitosanın farklı moleküler ağırlıklarının şişme davranışı üzerindeki etkilerini belirlemek için Fick Kanunu difüzyon matematiksel modeli kullanılarak araştırıldı. Glutaraldehid ile çapraz bağlanan kitosan hidrojelleri, Fick'in difüzyon yasalarına göre Süper Durum II Difüzyonu gösterdi.

Proje Numarası

Yalova University BAPKO Graduate Thesis Project (2020/YL/0025).

Kaynakça

  • E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” Journal of Advanced Research, vol. 6, no. 2. 2015. doi: 10.1016/j.jare.2013.07.006.
  • N. Sarhan, E. G. Arafa, N. Elgedawy, K. N. M. Elsayed, and F. Mohamed, “Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-58875-1.
  • A. Martínez-Ruvalcaba, J. C. Sánchez-Díaz, F. Becerra, L. E. Cruz-Barba, and A. González-Álvarez, “Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels,” Express Polym Lett, vol. 3, no. 1, 2009, doi: 10.3144/expresspolymlett.2009.5.
  • M. A. Gámiz-González et al., “Determining the influence of N-acetylation on water sorption in chitosan films,” Carbohydr Polym, vol. 133, 2015, doi: 10.1016/j.carbpol.2015.07.020.
  • A. Dilmi, T. Bartil, N. Yahia, and Z. Benneghmouche, “Hydrogels based on 2-hydroxyethylmethacrylate and chitosan: Preparation, swelling behavior, and drug delivery,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 63, no. 10, 2014, doi: 10.1080/00914037.2013.854221.
  • K. C. Gupta and F. H. Jabrail, “Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman,” Carbohydr Res, vol. 342, no. 15, 2007, doi: 10.1016/j.carres.2007.06.009.
  • M. A. Gámiz-González, D. M. Correia, S. Lanceros-Mendez, V. Sencadas, J. L. Gómez Ribelles, and A. Vidaurre, “Kinetic study of thermal degradation of chitosan as a function of deacetylation degree,” Carbohydr Polym, vol. 167, pp. 52–58, 2017, doi: 10.1016/j.carbpol.2017.03.020.
  • H. S. Kaçoğlu, Ö. Ceylan, and M. Çelebi, “Comparative study of the effect of cross-linking degree on chitosan hydrogels synthesized with low and medium molecular weight chitosan,” Polym Eng Sci, Mar. 2024, doi: 10.1002/pen.26619.
  • H. Y. Zhou, X. G. Chen, M. Kong, C. S. Liu, D. S. Cha, and J. F. Kennedy, “Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system,” Carbohydr Polym, vol. 73, no. 2, pp. 265–273, 2008, doi: 10.1016/j.carbpol.2007.11.026.
  • O. Akakuru and B. O. Isiuku, “Chitosan Hydrogels and their Glutaraldehyde-Crosslinked Counterparts as Potential Drug Release and Tissue Engineering Systems - Synthesis, Characterization, Swelling Kinetics and Mechanism,” J Phys Chem Biophys, vol. 07, no. 03, 2017, doi: 10.4172/2161-0398.1000256.
  • J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, and R. Gurny, “Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 19–34, 2004, doi: 10.1016/S0939-6411(03)00161-9.
  • F. Croisier and C. Jérôme, “Chitosan-based biomaterials for tissue engineering,” European Polymer Journal, vol. 49, no. 4. 2013. doi: 10.1016/j.eurpolymj.2012.12.009.
  • H. C. Yang and M. H. Hon, “The effect of the degree of deacetylation of chitosan nanoparticles and its characterization and encapsulation efficiency on drug delivery,” Polymer - Plastics Technology and Engineering, vol. 49, no. 12, 2010, doi: 10.1080/03602559.2010.482076.
  • J. Fu, F. Yang, and Z. Guo, “The chitosan hydrogels: from structure to function,” New Journal of Chemistry, vol. 42, no. 21, pp. 17162–17180, 2018, doi: 10.1039/C8NJ03482F.
  • H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, “Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review,” Carbohydr Polym, vol. 199, no. June, pp. 445–460, 2018, doi: 10.1016/j.carbpol.2018.06.114.
  • S. Nangia, D. N. Katyal, and S. G. Warkar, “Kinetics , absorption and diffusion mechanism of crosslinked Chitosan Kinetics , absorption and diffusion mechanism of crosslinked Chitosan Hydrogels,” Indian Journal of Engineering and Materials Sciences, vol. 28, no. October, pp. 374–384, 2021.
  • “Merck Laboratuvar El Kitabı,” 2007.
  • S. Jin, F. Bian, M. Liu, S. Chen, and H. Liu, “Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pote sizes prepared by a freeze treatment,” Polym Int, vol. 58, no. 2, pp. 142–148, 2009, doi: 10.1002/pi.2504.
  • Y. Zhou et al., “Photopolymerized water-soluble maleilated chitosan/methacrylated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds,” Int J Biol Macromol, vol. 106, pp. 227–233, 2018, doi: 10.1016/j.ijbiomac.2017.08.002.
  • A. Jastram, T. Lindner, C. Luebbert, G. Sadowski, and U. Kragl, “Swelling and diffusion in polymerized ionic liquids-based hydrogels,” Polymers (Basel), vol. 13, no. 11, p. 1834, 2021, doi: 10.3390/polym13111834.
  • K. Zielińska, W. Kujawski, and A. G. Chostenko, “Chitosan hydrogel membranes for pervaporative dehydration of alcohols,” Sep Purif Technol, vol. 83, no. 1, pp. 114–120, 2011, doi: 10.1016/j.seppur.2011.09.023.
  • R. Silva, G. Silva, O. Coutinho, J. Mano, and R. L. Reis, “Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes,” J Mater Sci Mater Med, vol. 15, no. 10, pp. 1105–1112, 2004, doi: 10.1023/B:JMSM.0000046392.44911.46.
  • K. Wegrzynowska-Drzymalska et al., “Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications,” Materials, vol. 13, no. 15, pp. 1–27, 2020, doi: 10.3390/ma13153413.
  • S. J. Kim, S. U. Ryon Shin, N. G. Kim, and S. I. Kim, “Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide),” Journal of Macromolecular Science - Pure and Applied Chemistry, vol. 42 A, no. 8, pp. 1073–1083, 2005, doi: 10.1081/MA-200065934.
  • T. Erşen Dudu and D. Alpaslan, “Eco-friendly and biodegradable dimethylacrylamide/starch hydrogels for controlled release of urea and its water retention,” MANAS Journal of Engineering, vol. 10, no. 2, pp. 116–128, 2022, doi: 10.51354/mjen.1194756.
  • E. Mirzaei B., A. Ramazani, M. Shafiee, and M. Danaei, “Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 62, no. 11, pp. 605–611, 2013, doi: 10.1080/00914037.2013.769165.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller, Polimer Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Hanife Songül Kaçoğlu 0000-0002-4982-5172

Özgür Ceylan 0000-0003-1265-3730

Mithat Çelebi 0000-0002-2013-5354

Proje Numarası Yalova University BAPKO Graduate Thesis Project (2020/YL/0025).
Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 23 Mayıs 2024
Kabul Tarihi 30 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kaçoğlu, H. S., Ceylan, Ö., & Çelebi, M. (2024). Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels. Open Journal of Nano, 9(2), 106-118. https://doi.org/10.56171/ojn.1488770
AMA Kaçoğlu HS, Ceylan Ö, Çelebi M. Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels. Open J. Nano. Aralık 2024;9(2):106-118. doi:10.56171/ojn.1488770
Chicago Kaçoğlu, Hanife Songül, Özgür Ceylan, ve Mithat Çelebi. “Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels”. Open Journal of Nano 9, sy. 2 (Aralık 2024): 106-18. https://doi.org/10.56171/ojn.1488770.
EndNote Kaçoğlu HS, Ceylan Ö, Çelebi M (01 Aralık 2024) Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels. Open Journal of Nano 9 2 106–118.
IEEE H. S. Kaçoğlu, Ö. Ceylan, ve M. Çelebi, “Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels”, Open J. Nano, c. 9, sy. 2, ss. 106–118, 2024, doi: 10.56171/ojn.1488770.
ISNAD Kaçoğlu, Hanife Songül vd. “Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels”. Open Journal of Nano 9/2 (Aralık 2024), 106-118. https://doi.org/10.56171/ojn.1488770.
JAMA Kaçoğlu HS, Ceylan Ö, Çelebi M. Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels. Open J. Nano. 2024;9:106–118.
MLA Kaçoğlu, Hanife Songül vd. “Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels”. Open Journal of Nano, c. 9, sy. 2, 2024, ss. 106-18, doi:10.56171/ojn.1488770.
Vancouver Kaçoğlu HS, Ceylan Ö, Çelebi M. Determination of Swelling Kinetics and Diffusion Mechanisms of Chemically Crosslinked Porous Chitosan Hydrogels. Open J. Nano. 2024;9(2):106-18.

Open Journal of Nano(OJN), dergisi molekülerden mikro boyuttaki yapılara kadar değişen fiziksel, kimyasal ve biyolojik olaylar ve süreçlerle ilgili (ancak bunlarla sınırlı olmayan) bilgilerle ilgilenir.
Cc_by-nc_icon.svgThe Open Journal of Nano dergisinde yayınlanan tüm yayınlar Atıf-GayriTicari 4.0 Uluslararası (CC BY-NC 4.0) lisansı altında lisanlanmıştır.