Araştırma Makalesi
BibTex RIS Kaynak Göster

Pop müzik yaratımında üretken yapay zekanın etki eden faktörlerinin analizi

Yıl 2025, Cilt: 10 Sayı: 3, 572 - 583, 28.07.2025
https://doi.org/10.31811/ojomus.1668288

Öz

Üretken yapay zekanın (YZ) hızlı temposu, özellikle pop müzik prodüksiyonu olmak üzere birçok yaratıcı alanda, yeni kompozisyon, prodüksiyon ve ses tasarımı araçları sunarak devrim yarattı. Bu araştırma, yaratıcılık, prodüksiyon uygulamaları ve endüstri duygusu üzerindeki etkisini incelemek için Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesine (PLS-SEM) dayalı olarak pop müzik prodüksiyonunda üretken yapay zeka benimsenmesinin belirleyicilerini araştırıyor. Araştırma, üretken yapay zekanın müzik yaratma prosedürlerini değiştirerek ve dinleyici bağlılığını etkileyerek yaratıcı prodüksiyonu iyileştirdiğini varsayıyor. Araştırma, kullanıcı katılımı (UE), sanatçı özerkliği (AA), işbirlikçi algı (CP), duygusal etki (EI), yapay zeka tarafından üretilen müziğin algılanan kalitesi (PQ), yaratıcılık geliştirme (CE) ve müzik prodüksiyon verimliliği (MPE) gibi birkaç önemli faktörü inceliyor. Toplamda 100 profesyonel besteci ve 200 hevesli sanatçı ile birlikte 500 müzik dinleyicisi, anketleri tamamlayan ve müzik yaratma faaliyetlerinde YZ ile iş birliği yapan örneği oluşturdu. SmartPLS 3.2.9, yapısal eşitlik modelleme prosedürleri aracılığıyla doğrudan ve dolaylı değişken ilişkilerini inceleyen yol analizi tekniklerini kullanarak istatistiksel testler gerçekleştirdi. Sonuçlar, CE’nin (β = 0,298, p < 0,01) ve UE’nin (β = 0,248, p < 0,05) müzik prodüksiyonunda AI araçlarının benimsenmesinde önemli bir etkiye sahip olduğunu, PQ’nun ise hem davranışsal niyeti (BI) hem de gerçek kullanım davranışını (UB) belirlemede önemli bir rol oynadığını göstermektedir. Bulgular, AI araçlarının yaratıcı gizli nitelikleri nedeniyle daha yeni sanatçılar tarafından yaygın olarak dahil edilmesine rağmen, yazarlık hakları, özgünlük ve müzik yapımında insan katılımının rolüyle ilgili endişelerin devam ettiğini öne sürmektedir. Bu araştırma, AI’nın pop müzik yaratımını nasıl yeniden şekillendirdiğine dair daha derin bir empatiye katkıda bulunmakta ve müzik endüstrisi için daha geniş etkilerine dair değerli içgörüler sunmaktadır.

Kaynakça

  • Alaeddine, M., & Tannoury, A. (2021). Artificial intelligence in music composition. In IFIP Advances in Information and Communication Technology (pp. 387-397). Springer International Publishing. https://doi.org/10.1007/978-3-030-79150-6_31
  • Atlas, L. G., Mageshkumar, C., Shiny, K. V., Bhavana, D., & Madhumitha, V. (2025). Generative AI in creative industries using gans for music and art generation with human-AI co-creation. ICTACT Journal on Soft Computing, 15(3), 3653-3661. http://doi.org/10.21917/ijsc.2025.0507
  • Bryce, D. (2024). Artificial intelligence and music: Analysis of music generation techniques via deep learning and the implications of AI in the music industry [Honors thesis, Bryant University]. https://digitalcommons.bryant.edu/honors_data_science/12/
  • Cipta, F., Sukmayadi, Y., Milyartini, R., & Hardini, T. I. (2024). Optimizing AI-powered music creation social media to amplify learning content. Jurnal Kependidikan: Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran dan Pembelajaran, 10(3), 881-892. https://doi.org/10.33394/jk.v10i3.12332
  • Deruty, E., Grachten, M., Lattner, S., Nistal, J., & Aouameur, C. (2022). On the development and practice of AI technology for contemporary popular music production. Transactions of the International Society for Music Information Retrieval, 5(1), 35-49. https://doi.org/10.5334/tismir.100
  • Ferreira, P., Limongi, R., & Fávero, L. P. (2023). Generating music with data: Application of deep learning models for symbolic music composition. Applied Sciences, 13(7), 4543. https://doi.org/10.3390/app13074543
  • Galuszka, P. (2024). The influence of generative AI on popular music: Fan productions and the reimagination of iconic voices. Media, Culture & Society, 47(3), 603-612. https://doi.org/10.1177/01634437241282382
  • Jaini, S., & Katikireddi, P. M. (2022). Music and art generation using generative AI. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(6), 684-690. https://doi.org/10.32628/CSEIT2215472
  • Ji, S., Wu, S., Wang, Z., Li, S., & Zhang, K. (2025). A comprehensive survey on generative AI for video-to-music generation. arXiv. https://doi.org/10.48550/arXiv.2502.12489
  • Li, S. (2025). The impact of AI-driven music production software on the economics of the music industry. Information Development. https://doi.org/10.1177/02666669241312170
  • Novikova, K. (2024). Future of artificial intelligence in music industry: The connection between generative AI and music production [Bachelor’s thesis, JAMK University]. https://www.theseus.fi/bitstream/handle/10024/859952/Novikova_Kristina.pdf?sequence=3&isAllowed=y
  • Ojukwu, E. V. (2024). Empowering Nigerian youths through music education: Fostering arts and nation-building. ESTAGA: Journal of Interdisciplinary Perspectives, 1(2), 194-207.
  • Sturm, B. L. T., Iglesias, M., Ben-Tal, O., Miron, M., & Gómez, E. (2019). Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8(3), 115. https://doi.org/10.3390/arts8030115
  • Tan, S. (2024). Are we all musicians now? Authenticity, musicianship, and AI music generator Suno. SocArXiv Papers. https://doi.org/10.31235/osf.io/4nt8z
  • Vechtomova, O., & Sahu, G. (2023). LyricJam sonic: A generative system for real-time composition and musical improvisation. In Lecture Notes in Computer Science (pp. 292-307). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-29956-8_19
  • Zhang, N., Yan, J., & Briot, J.-P. (2023). Artificial intelligence techniques for pop music creation: A real music production perspective. Elsevier BV. https://dx.doi.org/10.2139/ssrn.4490102

An analysis of influencing factors of generative AI in pop music creation

Yıl 2025, Cilt: 10 Sayı: 3, 572 - 583, 28.07.2025
https://doi.org/10.31811/ojomus.1668288

Öz

The fast pace of generative artificial intelligence (AI) has already revolutionized several creative fields, especially pop music production, by introducing fresh composition, production, and sound design tools. This research explores the determinants of generative AI adoption within pop music production based on Partial Least Squares Structural Equation Modeling (PLS-SEM) to examine its influence on creativity, production practices, and industry sentiment. The investigation hypothesizes that generative AI improves creative production by changing music creation procedures and influencing listener commitment. The investigation examines several important factors, such as user engagement (UE), artist autonomy (AA), collaborative perception (CP), emotional effect (EI), perceived quality of AI-generated music (PQ), creativity enhancement (CE), and music production efficiency (MPE). A total of 100 professional composers and 200 aspiring artists along with 500 music listeners formed the sample that completed surveys and collaborated with AI in music creation activities. SmartPLS 3.2.9 performed statistical testing using path analysis techniques, which examined direct and indirect variable relationships through structural equation modeling procedures. The results indicate that CE (β = 0.298, p < 0.01) and UE (β = 0.248, p < 0.05) have a significant impact on the adoption of AI tools in music production, while PQ plays a substantial role in determining both behavioral intention (BI) and actual usage behavior (UB). The findings propose that while AI tools are widely included by fresher artists for their creative latent, concerns regarding authorship rights, originality, and the role of human participation in music-making remain. This exploration contributes to a deeper empathy of how AI is reshaping pop music creation and offers valuable insights into its broader implications for the music industry.

Kaynakça

  • Alaeddine, M., & Tannoury, A. (2021). Artificial intelligence in music composition. In IFIP Advances in Information and Communication Technology (pp. 387-397). Springer International Publishing. https://doi.org/10.1007/978-3-030-79150-6_31
  • Atlas, L. G., Mageshkumar, C., Shiny, K. V., Bhavana, D., & Madhumitha, V. (2025). Generative AI in creative industries using gans for music and art generation with human-AI co-creation. ICTACT Journal on Soft Computing, 15(3), 3653-3661. http://doi.org/10.21917/ijsc.2025.0507
  • Bryce, D. (2024). Artificial intelligence and music: Analysis of music generation techniques via deep learning and the implications of AI in the music industry [Honors thesis, Bryant University]. https://digitalcommons.bryant.edu/honors_data_science/12/
  • Cipta, F., Sukmayadi, Y., Milyartini, R., & Hardini, T. I. (2024). Optimizing AI-powered music creation social media to amplify learning content. Jurnal Kependidikan: Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran dan Pembelajaran, 10(3), 881-892. https://doi.org/10.33394/jk.v10i3.12332
  • Deruty, E., Grachten, M., Lattner, S., Nistal, J., & Aouameur, C. (2022). On the development and practice of AI technology for contemporary popular music production. Transactions of the International Society for Music Information Retrieval, 5(1), 35-49. https://doi.org/10.5334/tismir.100
  • Ferreira, P., Limongi, R., & Fávero, L. P. (2023). Generating music with data: Application of deep learning models for symbolic music composition. Applied Sciences, 13(7), 4543. https://doi.org/10.3390/app13074543
  • Galuszka, P. (2024). The influence of generative AI on popular music: Fan productions and the reimagination of iconic voices. Media, Culture & Society, 47(3), 603-612. https://doi.org/10.1177/01634437241282382
  • Jaini, S., & Katikireddi, P. M. (2022). Music and art generation using generative AI. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(6), 684-690. https://doi.org/10.32628/CSEIT2215472
  • Ji, S., Wu, S., Wang, Z., Li, S., & Zhang, K. (2025). A comprehensive survey on generative AI for video-to-music generation. arXiv. https://doi.org/10.48550/arXiv.2502.12489
  • Li, S. (2025). The impact of AI-driven music production software on the economics of the music industry. Information Development. https://doi.org/10.1177/02666669241312170
  • Novikova, K. (2024). Future of artificial intelligence in music industry: The connection between generative AI and music production [Bachelor’s thesis, JAMK University]. https://www.theseus.fi/bitstream/handle/10024/859952/Novikova_Kristina.pdf?sequence=3&isAllowed=y
  • Ojukwu, E. V. (2024). Empowering Nigerian youths through music education: Fostering arts and nation-building. ESTAGA: Journal of Interdisciplinary Perspectives, 1(2), 194-207.
  • Sturm, B. L. T., Iglesias, M., Ben-Tal, O., Miron, M., & Gómez, E. (2019). Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8(3), 115. https://doi.org/10.3390/arts8030115
  • Tan, S. (2024). Are we all musicians now? Authenticity, musicianship, and AI music generator Suno. SocArXiv Papers. https://doi.org/10.31235/osf.io/4nt8z
  • Vechtomova, O., & Sahu, G. (2023). LyricJam sonic: A generative system for real-time composition and musical improvisation. In Lecture Notes in Computer Science (pp. 292-307). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-29956-8_19
  • Zhang, N., Yan, J., & Briot, J.-P. (2023). Artificial intelligence techniques for pop music creation: A real music production perspective. Elsevier BV. https://dx.doi.org/10.2139/ssrn.4490102
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Müzik Algısı, Müzik Performansı, Müzik Teknolojisi ve Kayıt
Bölüm Araştırma Makalesi
Yazarlar

Shiyue Zhang 0009-0006-2334-6487

Hyuntai Kim 0009-0007-2442-0148

Gönderilme Tarihi 30 Mart 2025
Kabul Tarihi 4 Haziran 2025
Yayımlanma Tarihi 28 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 3

Kaynak Göster

APA Zhang, S., & Kim, H. (2025). An analysis of influencing factors of generative AI in pop music creation. Online Journal of Music Sciences, 10(3), 572-583. https://doi.org/10.31811/ojomus.1668288