Araştırma Makalesi
BibTex RIS Kaynak Göster

Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process

Yıl 2024, , 1600 - 1616, 16.09.2024
https://doi.org/10.47495/okufbed.1385520

Öz

The aim of this study is to determine the endogenous hormone activities of abscisic acid (ABA), Jasmonic acid (JA) and Salicylic acid (SA) in compatible (Intraspecific = ISP) and incompatible pollination (Intergeneric = IGP) in stigmatic ovaries during orchid post-pollination process. It was designed to be Himantoglossum robertianum in ISP experiments and Himantoglossum robertianum and Orchis italica in IGP experiments. Polynariums taken from O. italica have been applied with needles to the flower stigmas of H. robertianum. Ovaries with stigma from both pollination types were taken separately for each day for a total of 10 days and quantitative endogenous hormone analyzes have been performed by LC-MS/MS. After all, SA hormone has been detected for the first time in both ISP and IGP, but only ISP values were significant. The statistical analysis revealed that while SA is significant in only ISP, ABA values were found to be highly significant in both ISP and IGP. ISP9 also showed high significance. Additionally, ABA values were generally higher than SA values, especially in IGP experiments. The results also emphasized the importance of ovarian endogenous hormone activities for the first time. JA was not detected in the analysis.

Kaynakça

  • Arditti J. Post pollination phenomena in orchid flowers. Australian Orchid Reviews 1969; 34: 155-158. https://doi.org/10.1002/j.1537-2197.1973.tb05985.x
  • Arditti J., Jeffrey DC., Flick BH. Post-pollination phenomena in orchid flowers iii. Effects and interactions of auxin, kinetin or gibberellin. New Phytologist 1971; 70: 1125-1141. https://doi.org/10.1111/j.1469-8137.1971.tb04595.x
  • Arditti J., Nanette MH, Chadwick AV. Post-pollination phenomena in orchid flowers. IV. Effects of ethylene American Journal of Botany 1973; 60(9): 883-888. https://doi.org/10.1002/j.1537-2197.1973.tb05985.x
  • Arditti J., Flick BH. Post-pollination phenomena in orchid flowers. V. Participation by the rostellum and gynostemium tip. American Journal of Botany 1974; 61: 643-651. https://doi.org/10.1002/j.1537-2197.1974.tb12284.x
  • Arditti J., Flick BH. Post pollination phenomena in orchid flowers. VI. Excised floral segments of Cymbidium. American Journal of Botany 1976; 63(2): 201-211. https://doi.org/10.1002/j.1537-2197.1976.tb11803.x
  • Arditti J. Aspects of the physiology of orchids. Advances in Botanical Research 1979a; 7; 421-655. https://doi.org/10.1016/S0065-2296(08)60091-9
  • Arditti J. Aspects of the physiology of orchids. in: Woolhouse HW. (Ed.) Advances in Botanical Research, Academic press, London, UK 1979b; 7: 421-655.
  • Attri LK., Bhanwra RK., Nayyar H. Pollination induced embryology studies in Aerides multiflora (ROXB.). International Journal of Botanical Studies 2020; 5(4): 211-215.
  • Baktır İ. Bitki büyüme düzenleyicileri özellikleri ve kullanımları. Hasad Yayınları 2010.
  • Barendse GWM., Rodriguespereira AS., Berkers PA., Driessen FM., Vaneyden-Emons A. et al. Growth hormones in pollen, styles and ovaries of Petunia hybrida and of Lilium species. Acta Botanica Neerlandica 1970; 19(2): 175-186.
  • Behrouzyar EK., Yarnia M. Physiological response of sweet corn (Zea mays var. Merit) to foliar application of salicylic acid under water deficit stress. Bangladesh Journal of Botany 2015; 44(4): 659-663. https://doi.org/10.3329/bjb.v44i4.38647
  • Belt ISP., Huang S., Thatcher LF., Casarotto H., Singh ISP. et al. Salicylic acid-dependent plant stress signalling via mitochondrial succinate dehydrogenase. Plant Physiology 2018; 176(1): 1-30. https://doi.org/10.1104/pp.16.00060
  • Bright J., Hiscock SJ., James PE., Hancock JT. Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. Plant Physiology and Biochemistry 2009; 47: 49–55. https://doi.org/10.1016/j.plaphy.2008.09.005
  • Carrier DJ., Edward JK., Cheryl AB., Cunningham JE., Dunstan DI. Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. Journal of Experimental Botany 1999; 50(337): 1359–1364
  • Chen ZL., Li XM., Zhang H. Effect of salicylic acid pretretment on drought stress resposes of zoysiagrass (Zoysia japonica). Russian Journal of Plant Physiology 2012; 61(5): 619-625. https://doi.org/10.1134/S1021443714050057
  • Chen ISP., Guo‐Jun Li, Bressan RA., Chun‐Peng S., Jian‐Kang Z. et al. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 2020; 62(1): 25–54. https://doi.org/10.1111/jipb.12899
  • Cheng WH., Endo A., Zhou L., Penney J., Chen HC. et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 2002; 14: 2723–2743.
  • Cheng ZJ., Zhao XY., Shao XX., Wang F., Zhou C. et al. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of Short Hypocotyl Under Blue1. Plant Cell 2014; 26: 1053–1068. https://doi.org/10.1105/tpc.113.121566
  • Clifford SC., Owens SJ. Post-pollination phenomena and embryo development in the oncidiinae (Orchidaceae). Sexual reproduction in higher plants. Proceedings of the Tenth International Symposium on the Sexual Reproduction in Higher Plants 1988 Siena, Italy.
  • Deniz İG. Himantoglossum Spreng. Orchidaceae, in: Güner A., Kandemir A., Menemen Y., Yıldırım H., Aslan S. et al. (Eds.) Resimli Türkiye Florası, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Basımı Cilt 3a, 1st edition, İstanbul, 2022, pp. 235-236 (in Turkish).
  • Dijkman MJ., Burg SP. Auxin induced spoiling of vanda blossoms. American Orchid Society Bulletin 1970; 39: 799-804.
  • Firon N., Nepi M., Pacini E. Water status and associated processes mark critical stages in pollen development and functioning, Annales of Botany 2012; 109: 1201–1214. https://doi.org/10.1093/aob/mcs070
  • Fischer UA., Carle R., Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chemistry 2011; 127: 807–821. https://doi.org/10.1016/j.foodchem.2010.12.156
  • Gao P., Sheng YY., Luan FS., Ma HY., Liu S. RNA-Seq transcriptome profiling reveals differentially expressed genes involved in sex expression in melon. Crop Science 2015; 55(4): 1686-1695. https://doi.org/10.2135/cropsci2014.06.0444
  • Goldschmidt ED. Abscisic acid in citrus flower organs as related to floral development and function. Plant Cell Physiology 1980; 21(1): 193–195.
  • Güler N. Orchis L., Orchidaceae. in: Güner A., Kandemir A., Menemen Y., Yıldırım H., Aslan S. et al. (Eds.) Resimli Türkiye Florası, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Basımı, Cilt 3a, 1st edition, İstanbul, 2022, pp 165-167 (in Turkish).
  • Harris MJ., Dugger WM. Levels of free and conjugated abscisic acid in developing floral organs of the navel orange (Citrus sinensis IL.). Plant Physiology 1986; 82: 1164- 1166. https://doi.org/10.1104/pp.82.4.1164
  • Hong PI., Chen JT., Chang WC. Effects of salicylic and acetylsalicylic acid on direct somatic embryogenesis in oncidium. Journal of Plant Biochemistry and Biotechnology 2008; 17(2): 149-153. https://doi.org/10.1007/BF03263276
  • Hu Z., Lan S., Zhao N., Su N., Xue Q. et al. Soft-X-irradiated pollens induce parthenocarpy in watermelon via rapid changes of hormone-signalings and hormonal regulation. Scientia Horticulturae 2019; 250: 317–328.
  • Kojima K., Kuraishi S., Sakurai N., Fusao K. Distribution of abscisic acid in different parts of the reproductive organs of tomato. Scientia Horticulturae 1993; 56(1): 23-30. https://doi.org/10.1016/0304-4238(93)90098-B
  • Kovaleva L., Zakharova E. Hormonal status of the pollen-pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L. Sexual Plant Reproduction 2003; 16: 191–196.
  • Lanzino M., Palermo AM., Pellegrino G. The effect of inflorescence display size and flower position onpollination success in two deceptive and one rewarding orchid. Plant Biology 2023; https://doi.org/10.1111/plb.13505
  • Liu ML., Li WY., Zhao G., Fan XM., Long HX. et al. New insights of salicylic acid into stamen abortion of female flowers in tung tree (Vernicia fordii). Frontiers in Genetics 2019; 10: 316. https://doi.org/10.3389/fgene.2019.00316
  • Liu Y., Zhou J., Lu M., Yang J., Tan X. The core jasmonic acid-signalling module CoCOI1/CoJAZ1/CoMYC2 Are involved in jas mediated growth of the pollen tube in camellia oleifera. Current Issues in Molecular Biology 2022; 44: 5405–5415. https://doi.org/10.3390/cimb44110366
  • Lu M., Junqin Z., Yiyao L., Jin Y., Xiaofeng T. CoNPR1 and CoNPR3.1 are involved in SA- and MeSAmediated growth of the pollen tube in Camellia oleifera. Physiologia Plantarum 2021; 172: 2181–2190. https://doi.org/10.1111/ppl.13410
  • Luo JP., Jiang WT., Pan LJ. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Science 2001; 161: 125-132.
  • Luo Y., Liu M, Cao J, Cao F, Zhang L. The role of salicylic acid in plant flower development. Forestry Research 2022; 2: 14. https://doi.org/10.48130/FR-2022-0014
  • Martin-Mex R., Nexticapan-Garces A., Larque-Saavedra A. Effect of salicylic acid in sex expression in Carica papaya L. 10th International Symposium on Plant Biorregulators in Fruit Production 2005 Saltillo, Coahuila, Mexico.
  • Medina AM., Appels FVW., Van Wees SCM. Impact of salicylic acid and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signaling & Behavior 2017; 12(8): e1345404. https://doi.org/10.1080/15592324.2017.1345404
  • Müller M., Munné-Bosch S. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 2011; 7: Article number: 37.
  • Netlak P., Imsabaia W., Munné-Bosch S., Leethiti P., Van Doorn WG., Identification of indole-3-acetic acid as an important hormone in post– pollination of Dendrobium orchids and interaction of other hormones. Agrıculture And Natural Resources 2022; 26: 149-158.
  • Oçkun MA. Bağcılıkta metil jasmonat (meja), jasmonik asit (ja) ve salisilik asitin (sa) aşıda kallun oluşumu üzerine etkileri. Namık Kemal Üniversitesi, Yüksek Lisans Tezi, 2013.
  • Strauss MS., Arditti J. Postpollination phenomena in orchid flowers. X. transport and fate of auxin. Botanical Gazette 1982; 143(3): 286-293. https://doi.org/10.1086/337302
  • Strauss MS., Arditti J. Postpollination phenomena in orchid flowers. Xii. Effects of pollination, emasculation, and auxin treatment on flowers of cattleya porcia 'cannizaro' and the rostellum of Phalaenopsis. Botanical Gazette 1984; 145(1): 43- 49. https://doi.org/10.1086/337424
  • Vernieri P., Perata P., Lorenzi R., Ceccarelli N. Abscisic acid levels during early seed development in sechium edule sw. Plant Physiology 1989; 91: 1351-1355. doi: 10.1104/pp.91.4.1351.
  • Wang H., Zhang S., Qu Y., Gao R., Xiao Y., Wang Z., Zhai R., Yang C., Xu L. Jasmonic acid and ethylene participate in the gibberellin-induced ovule programmed cell death process in seedless pear ‘1913’ (Pyrus hybrid). International Journal of Molecular Sciences 2021; 22: 9844. https://doi.org/10.3390/ijms22189844
  • Wanqing C., Danyang M., Tiantian Z., Bei J., Zhaogeng L., Wang L. Phytohormone requirements for pollination drop secretion in Ginkgo biloba ovules. Botany 2021; 99: 251–260. dx.doi.org/10.1139/cjb-2020-0113
  • Withner CL., Nelson PISP., Wejksnora PJ. The anatomy of orchids, in: Withner CL. (Ed.) The Orchids, Scientific Studies, John Wiley and Sons, New York, USA, 1974; 267-347.
  • Xiao HS., Lv LX., Chen ZT. Dynamic changes of endogenous hormone in litchi (Litchi chinensis sonn.) pistil and stamen during flower development. Chinese Journal of Applied and Environmental Biology 2003; 9: 279–283.
  • Xie W. Molecular mechanisms of NF-YB2 and NF-YB3 balancing flowering time and disease resistance in plants. Zhejiang University, Hangzhou, Zhejiang Province, Thesis, China, 2021.
  • Yamane H., Abe H., Takahashi N. Jasmonic acid and methyl jasmonate in pollens and anthers of three camellia species. Plant Cell Physiology 1982; 23(6): 1125–1127. https://doi.org/10.1093/oxfordjournals.pcp.a076443
  • Zhang XS., Onell SD. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. The Plant Cell 1993; 5: 403-418. https://doi.org/10.1105/tpc.5.4.403
  • Zhang YS., Li Q., Jiang L., Kai WB, Liang B. et al. Suppressing type 2  C protein phosphatases alters fruit ripening and the stress response in tomato. Plant Cell Physiology 2018; 59: 142–154. https://doi.org/10.1093/pcp/pcx169
  • Zhao S., Zhang Y., Zhao Y. Effect of salicylic acid on pollen germinating and pollen tube growth of pear. Hubei Agricultural Sciences 2012; 51: 1366–1369.
  • Zhao S. Studies on effects of salicylic acid on pollination and phenolic metabolism in pear (Pyrus L.). Heibei Agricultural University, Baoding, Heibei Province, Thesis, China, 2004.
  • Zhao Y., Jiang T., Li L., Zhang X., Yang T., Liu C., Chu J., Zheng B. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. Journal of Genetics and Genomics 2021; 48: 123e133. DOI: 10.1016/j.jgg.2021.02.003
  • Zhou D., Shen W., Cui Y., Liu Y., Zheng X. et al. Apical spikelet abortion (asa) controls apical panicle development in rice by regulating salicylic acid biosynthesis. Frontiers in Plant Science 2021; 12: 636877. https://doi.org/10.3389/fpls.2021.636877
  • Zou J., Abrams GD., Barton DL., Taylor DC., Pomeroy MISP. et al. Induction of lipid and oleosin biosynthesis by (+)-Abscisic Acid and its metabolites in microspore-derived embryos of Brassica napus L.cv reston (Biological responses in the presence of 8’-Hydroxyabscisic Acid). Plant Physiology 1995; 108: 563–571. https://doi.org/10.1104/pp.108.2.563.

Salisilik Asit Orkidelerin Tozlaşma Sonrası Sürecinde Absisik Asit ve Gibberellik Asit ile Birlikte Etkilidir

Yıl 2024, , 1600 - 1616, 16.09.2024
https://doi.org/10.47495/okufbed.1385520

Öz

Bu çalışmanın amacı orkide stigmalı ovaryumlarında uyumlu (Intraspesifik = ISP) ve uyumsuz tozlaşmada (Intergeneric = IGP) absisik asit (ABA), Jasmonik asit (JA) ve Salisilik asitin (SA) endojen hormon aktivitelerini belirlemektir. ISP tozlaşma deneyleri Himantoglossum robertianum çiçekleri arasında yapılmıştır. IGP deneylerinde tozlaşma, Himantoglossum robertianum ve Orchis italica çiçekleri arasında gerçekleştirildi. Bunun için O. italica'dan alınan polinariumlar, H. robertianum'un çiçek stigmalarına özel iğnelerle uygulanmıştır. Her iki tozlaşma tipine ait stigmalı ovaryumlar toplam 10 gün boyunca her gün için ayrı ayrı alınmış ve LC-MS/MS ile kantitatif endojen hormon analizleri yapılmıştır. Sonuçta SA hormonu ilk kez hem ISP'de hem de IGP'de tespit edildi ancak yalnızca ISP değerleri anlamlı çıkmıştır. Yapılan istatistiksel analizde SA'nın sadece ISP'de anlamlı olduğu, ABA değerlerinin ise hem ISP'de hem de IGP'de oldukça anlamlı olduğu görüldü. ISP9 da yüksek önem gösterdi. Ayrıca ABA değerleri, özellikle IGP deneylerinde genellikle SA değerlerinden yüksekti. Sonuçlar aynı zamanda ilk kez ovaryum endojen hormon aktivitelerinin önemini de vurguladı. Analizlerde JA tespit edilmemiştir

Kaynakça

  • Arditti J. Post pollination phenomena in orchid flowers. Australian Orchid Reviews 1969; 34: 155-158. https://doi.org/10.1002/j.1537-2197.1973.tb05985.x
  • Arditti J., Jeffrey DC., Flick BH. Post-pollination phenomena in orchid flowers iii. Effects and interactions of auxin, kinetin or gibberellin. New Phytologist 1971; 70: 1125-1141. https://doi.org/10.1111/j.1469-8137.1971.tb04595.x
  • Arditti J., Nanette MH, Chadwick AV. Post-pollination phenomena in orchid flowers. IV. Effects of ethylene American Journal of Botany 1973; 60(9): 883-888. https://doi.org/10.1002/j.1537-2197.1973.tb05985.x
  • Arditti J., Flick BH. Post-pollination phenomena in orchid flowers. V. Participation by the rostellum and gynostemium tip. American Journal of Botany 1974; 61: 643-651. https://doi.org/10.1002/j.1537-2197.1974.tb12284.x
  • Arditti J., Flick BH. Post pollination phenomena in orchid flowers. VI. Excised floral segments of Cymbidium. American Journal of Botany 1976; 63(2): 201-211. https://doi.org/10.1002/j.1537-2197.1976.tb11803.x
  • Arditti J. Aspects of the physiology of orchids. Advances in Botanical Research 1979a; 7; 421-655. https://doi.org/10.1016/S0065-2296(08)60091-9
  • Arditti J. Aspects of the physiology of orchids. in: Woolhouse HW. (Ed.) Advances in Botanical Research, Academic press, London, UK 1979b; 7: 421-655.
  • Attri LK., Bhanwra RK., Nayyar H. Pollination induced embryology studies in Aerides multiflora (ROXB.). International Journal of Botanical Studies 2020; 5(4): 211-215.
  • Baktır İ. Bitki büyüme düzenleyicileri özellikleri ve kullanımları. Hasad Yayınları 2010.
  • Barendse GWM., Rodriguespereira AS., Berkers PA., Driessen FM., Vaneyden-Emons A. et al. Growth hormones in pollen, styles and ovaries of Petunia hybrida and of Lilium species. Acta Botanica Neerlandica 1970; 19(2): 175-186.
  • Behrouzyar EK., Yarnia M. Physiological response of sweet corn (Zea mays var. Merit) to foliar application of salicylic acid under water deficit stress. Bangladesh Journal of Botany 2015; 44(4): 659-663. https://doi.org/10.3329/bjb.v44i4.38647
  • Belt ISP., Huang S., Thatcher LF., Casarotto H., Singh ISP. et al. Salicylic acid-dependent plant stress signalling via mitochondrial succinate dehydrogenase. Plant Physiology 2018; 176(1): 1-30. https://doi.org/10.1104/pp.16.00060
  • Bright J., Hiscock SJ., James PE., Hancock JT. Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. Plant Physiology and Biochemistry 2009; 47: 49–55. https://doi.org/10.1016/j.plaphy.2008.09.005
  • Carrier DJ., Edward JK., Cheryl AB., Cunningham JE., Dunstan DI. Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. Journal of Experimental Botany 1999; 50(337): 1359–1364
  • Chen ZL., Li XM., Zhang H. Effect of salicylic acid pretretment on drought stress resposes of zoysiagrass (Zoysia japonica). Russian Journal of Plant Physiology 2012; 61(5): 619-625. https://doi.org/10.1134/S1021443714050057
  • Chen ISP., Guo‐Jun Li, Bressan RA., Chun‐Peng S., Jian‐Kang Z. et al. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 2020; 62(1): 25–54. https://doi.org/10.1111/jipb.12899
  • Cheng WH., Endo A., Zhou L., Penney J., Chen HC. et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 2002; 14: 2723–2743.
  • Cheng ZJ., Zhao XY., Shao XX., Wang F., Zhou C. et al. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of Short Hypocotyl Under Blue1. Plant Cell 2014; 26: 1053–1068. https://doi.org/10.1105/tpc.113.121566
  • Clifford SC., Owens SJ. Post-pollination phenomena and embryo development in the oncidiinae (Orchidaceae). Sexual reproduction in higher plants. Proceedings of the Tenth International Symposium on the Sexual Reproduction in Higher Plants 1988 Siena, Italy.
  • Deniz İG. Himantoglossum Spreng. Orchidaceae, in: Güner A., Kandemir A., Menemen Y., Yıldırım H., Aslan S. et al. (Eds.) Resimli Türkiye Florası, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Basımı Cilt 3a, 1st edition, İstanbul, 2022, pp. 235-236 (in Turkish).
  • Dijkman MJ., Burg SP. Auxin induced spoiling of vanda blossoms. American Orchid Society Bulletin 1970; 39: 799-804.
  • Firon N., Nepi M., Pacini E. Water status and associated processes mark critical stages in pollen development and functioning, Annales of Botany 2012; 109: 1201–1214. https://doi.org/10.1093/aob/mcs070
  • Fischer UA., Carle R., Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chemistry 2011; 127: 807–821. https://doi.org/10.1016/j.foodchem.2010.12.156
  • Gao P., Sheng YY., Luan FS., Ma HY., Liu S. RNA-Seq transcriptome profiling reveals differentially expressed genes involved in sex expression in melon. Crop Science 2015; 55(4): 1686-1695. https://doi.org/10.2135/cropsci2014.06.0444
  • Goldschmidt ED. Abscisic acid in citrus flower organs as related to floral development and function. Plant Cell Physiology 1980; 21(1): 193–195.
  • Güler N. Orchis L., Orchidaceae. in: Güner A., Kandemir A., Menemen Y., Yıldırım H., Aslan S. et al. (Eds.) Resimli Türkiye Florası, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Basımı, Cilt 3a, 1st edition, İstanbul, 2022, pp 165-167 (in Turkish).
  • Harris MJ., Dugger WM. Levels of free and conjugated abscisic acid in developing floral organs of the navel orange (Citrus sinensis IL.). Plant Physiology 1986; 82: 1164- 1166. https://doi.org/10.1104/pp.82.4.1164
  • Hong PI., Chen JT., Chang WC. Effects of salicylic and acetylsalicylic acid on direct somatic embryogenesis in oncidium. Journal of Plant Biochemistry and Biotechnology 2008; 17(2): 149-153. https://doi.org/10.1007/BF03263276
  • Hu Z., Lan S., Zhao N., Su N., Xue Q. et al. Soft-X-irradiated pollens induce parthenocarpy in watermelon via rapid changes of hormone-signalings and hormonal regulation. Scientia Horticulturae 2019; 250: 317–328.
  • Kojima K., Kuraishi S., Sakurai N., Fusao K. Distribution of abscisic acid in different parts of the reproductive organs of tomato. Scientia Horticulturae 1993; 56(1): 23-30. https://doi.org/10.1016/0304-4238(93)90098-B
  • Kovaleva L., Zakharova E. Hormonal status of the pollen-pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L. Sexual Plant Reproduction 2003; 16: 191–196.
  • Lanzino M., Palermo AM., Pellegrino G. The effect of inflorescence display size and flower position onpollination success in two deceptive and one rewarding orchid. Plant Biology 2023; https://doi.org/10.1111/plb.13505
  • Liu ML., Li WY., Zhao G., Fan XM., Long HX. et al. New insights of salicylic acid into stamen abortion of female flowers in tung tree (Vernicia fordii). Frontiers in Genetics 2019; 10: 316. https://doi.org/10.3389/fgene.2019.00316
  • Liu Y., Zhou J., Lu M., Yang J., Tan X. The core jasmonic acid-signalling module CoCOI1/CoJAZ1/CoMYC2 Are involved in jas mediated growth of the pollen tube in camellia oleifera. Current Issues in Molecular Biology 2022; 44: 5405–5415. https://doi.org/10.3390/cimb44110366
  • Lu M., Junqin Z., Yiyao L., Jin Y., Xiaofeng T. CoNPR1 and CoNPR3.1 are involved in SA- and MeSAmediated growth of the pollen tube in Camellia oleifera. Physiologia Plantarum 2021; 172: 2181–2190. https://doi.org/10.1111/ppl.13410
  • Luo JP., Jiang WT., Pan LJ. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Science 2001; 161: 125-132.
  • Luo Y., Liu M, Cao J, Cao F, Zhang L. The role of salicylic acid in plant flower development. Forestry Research 2022; 2: 14. https://doi.org/10.48130/FR-2022-0014
  • Martin-Mex R., Nexticapan-Garces A., Larque-Saavedra A. Effect of salicylic acid in sex expression in Carica papaya L. 10th International Symposium on Plant Biorregulators in Fruit Production 2005 Saltillo, Coahuila, Mexico.
  • Medina AM., Appels FVW., Van Wees SCM. Impact of salicylic acid and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signaling & Behavior 2017; 12(8): e1345404. https://doi.org/10.1080/15592324.2017.1345404
  • Müller M., Munné-Bosch S. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 2011; 7: Article number: 37.
  • Netlak P., Imsabaia W., Munné-Bosch S., Leethiti P., Van Doorn WG., Identification of indole-3-acetic acid as an important hormone in post– pollination of Dendrobium orchids and interaction of other hormones. Agrıculture And Natural Resources 2022; 26: 149-158.
  • Oçkun MA. Bağcılıkta metil jasmonat (meja), jasmonik asit (ja) ve salisilik asitin (sa) aşıda kallun oluşumu üzerine etkileri. Namık Kemal Üniversitesi, Yüksek Lisans Tezi, 2013.
  • Strauss MS., Arditti J. Postpollination phenomena in orchid flowers. X. transport and fate of auxin. Botanical Gazette 1982; 143(3): 286-293. https://doi.org/10.1086/337302
  • Strauss MS., Arditti J. Postpollination phenomena in orchid flowers. Xii. Effects of pollination, emasculation, and auxin treatment on flowers of cattleya porcia 'cannizaro' and the rostellum of Phalaenopsis. Botanical Gazette 1984; 145(1): 43- 49. https://doi.org/10.1086/337424
  • Vernieri P., Perata P., Lorenzi R., Ceccarelli N. Abscisic acid levels during early seed development in sechium edule sw. Plant Physiology 1989; 91: 1351-1355. doi: 10.1104/pp.91.4.1351.
  • Wang H., Zhang S., Qu Y., Gao R., Xiao Y., Wang Z., Zhai R., Yang C., Xu L. Jasmonic acid and ethylene participate in the gibberellin-induced ovule programmed cell death process in seedless pear ‘1913’ (Pyrus hybrid). International Journal of Molecular Sciences 2021; 22: 9844. https://doi.org/10.3390/ijms22189844
  • Wanqing C., Danyang M., Tiantian Z., Bei J., Zhaogeng L., Wang L. Phytohormone requirements for pollination drop secretion in Ginkgo biloba ovules. Botany 2021; 99: 251–260. dx.doi.org/10.1139/cjb-2020-0113
  • Withner CL., Nelson PISP., Wejksnora PJ. The anatomy of orchids, in: Withner CL. (Ed.) The Orchids, Scientific Studies, John Wiley and Sons, New York, USA, 1974; 267-347.
  • Xiao HS., Lv LX., Chen ZT. Dynamic changes of endogenous hormone in litchi (Litchi chinensis sonn.) pistil and stamen during flower development. Chinese Journal of Applied and Environmental Biology 2003; 9: 279–283.
  • Xie W. Molecular mechanisms of NF-YB2 and NF-YB3 balancing flowering time and disease resistance in plants. Zhejiang University, Hangzhou, Zhejiang Province, Thesis, China, 2021.
  • Yamane H., Abe H., Takahashi N. Jasmonic acid and methyl jasmonate in pollens and anthers of three camellia species. Plant Cell Physiology 1982; 23(6): 1125–1127. https://doi.org/10.1093/oxfordjournals.pcp.a076443
  • Zhang XS., Onell SD. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. The Plant Cell 1993; 5: 403-418. https://doi.org/10.1105/tpc.5.4.403
  • Zhang YS., Li Q., Jiang L., Kai WB, Liang B. et al. Suppressing type 2  C protein phosphatases alters fruit ripening and the stress response in tomato. Plant Cell Physiology 2018; 59: 142–154. https://doi.org/10.1093/pcp/pcx169
  • Zhao S., Zhang Y., Zhao Y. Effect of salicylic acid on pollen germinating and pollen tube growth of pear. Hubei Agricultural Sciences 2012; 51: 1366–1369.
  • Zhao S. Studies on effects of salicylic acid on pollination and phenolic metabolism in pear (Pyrus L.). Heibei Agricultural University, Baoding, Heibei Province, Thesis, China, 2004.
  • Zhao Y., Jiang T., Li L., Zhang X., Yang T., Liu C., Chu J., Zheng B. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. Journal of Genetics and Genomics 2021; 48: 123e133. DOI: 10.1016/j.jgg.2021.02.003
  • Zhou D., Shen W., Cui Y., Liu Y., Zheng X. et al. Apical spikelet abortion (asa) controls apical panicle development in rice by regulating salicylic acid biosynthesis. Frontiers in Plant Science 2021; 12: 636877. https://doi.org/10.3389/fpls.2021.636877
  • Zou J., Abrams GD., Barton DL., Taylor DC., Pomeroy MISP. et al. Induction of lipid and oleosin biosynthesis by (+)-Abscisic Acid and its metabolites in microspore-derived embryos of Brassica napus L.cv reston (Biological responses in the presence of 8’-Hydroxyabscisic Acid). Plant Physiology 1995; 108: 563–571. https://doi.org/10.1104/pp.108.2.563.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Morfolojisi ve Anatomisi
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Mehmet Aybeke 0000-0001-9512-5313

Yayımlanma Tarihi 16 Eylül 2024
Gönderilme Tarihi 3 Kasım 2023
Kabul Tarihi 29 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aybeke, M. (2024). Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(4), 1600-1616. https://doi.org/10.47495/okufbed.1385520
AMA Aybeke M. Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Eylül 2024;7(4):1600-1616. doi:10.47495/okufbed.1385520
Chicago Aybeke, Mehmet. “Saliciylic Acid Is Also Effective Along With Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 4 (Eylül 2024): 1600-1616. https://doi.org/10.47495/okufbed.1385520.
EndNote Aybeke M (01 Eylül 2024) Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 4 1600–1616.
IEEE M. Aybeke, “Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 7, sy. 4, ss. 1600–1616, 2024, doi: 10.47495/okufbed.1385520.
ISNAD Aybeke, Mehmet. “Saliciylic Acid Is Also Effective Along With Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/4 (Eylül 2024), 1600-1616. https://doi.org/10.47495/okufbed.1385520.
JAMA Aybeke M. Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:1600–1616.
MLA Aybeke, Mehmet. “Saliciylic Acid Is Also Effective Along With Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 4, 2024, ss. 1600-16, doi:10.47495/okufbed.1385520.
Vancouver Aybeke M. Saliciylic Acid is also Effective Along with Abscisic Acid and Gibberellic Acid in the Orchid Post-Pollination Process. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(4):1600-16.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.