Araştırma Makalesi
BibTex RIS Kaynak Göster

2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives

Yıl 2024, , 2346 - 2363, 10.12.2024
https://doi.org/10.47495/okufbed.1414935

Öz

Surface topography is of importance in playing a major role for the mobilized mechanical behavior, and hence, the strength-stability performance of composite layered systems containing synthetic geomembrane liner and natural granular sand. The 2D surface topography alterations of different geomembranes were experimentally be studied by performing profile relief measurements for detecting and determining 2D surface topographical characteristics of different geomembrane liner sheets produced from distinctive polymeric resins (HDPE, LLDPE, PVC) previously subjected to abrasive action of granular sand grains at different relative densities (Dr) and dissimilar particle shape (rounded or angular), and additionally at various loading conditions. The surface topographical characteristics as evident on the detected profiles including asperity features such as size, shape, and spacing of material dislocations comprised of peaks and valleys in the topographies were different and unique to geomembrane type. As such, the softer and the more flexible the geomembrane liner sheet in an order of HDPE, LLDPE, PVC becomes, the greater the abrasion has developed in that the surface topography demonstrated more severe peaks and valleys. Further, the angular features of sand grains led to the mobilization of more violent abrasive action in that angular particles were able to penetrate into the surface of geomembrane liner, and thus, gouge on a trajectory along the surface. The dimensions and spacing of peaks and valleys for the surface topography were small-scale in relatively stiffer geomembrane liner sheet of HDPE in which the surface topography did not possess sharp corners such that the transitions from peaks to valleys to peaks were smooth and rounded as compared to that of LLDPE as well as PVC geomembranes where sharp and rough transitions from peaks to valleys to peaks exhibited. The quantification of surface topography alterations of different geomembranes by means of the computed values of average roughness (Ra) determined for the measured surface topographies of the liners unveiled that the Ra (i.e. surficial topographical changes) increases with an increase in load, relative density, particle angularity of grain shape, and softness of geomembrane liner sheet.

Kaynakça

  • Adeleke D., Kalumba D., Nolutshungu L., Oriokot J., Martinez A. The influence of asperities and surface roughness on geomembrane/geotextile interface friction angle. International Journal of Geosynthetics and Ground Engineering 2021; 20(2): 107-120.
  • Araujo GLS., Sanchez NP., Palmeira EM., Almeida MGG. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotextiles and Geomembranes 2022; 50(3): 751-763.
  • Brumund WF., Leonards GA. Experimental study of static and dynamic friction between sand and typical construction materials. Journal of Testing and Evaluation, JTEVA 1973; 1(2): 162-165.
  • DeJong JT., Frost JD. A multi-sleeve friction attachment for the cone penetrometer. ASTM, Geotechnical Testing Journal, GTJODJ 2002; 25(2): 111-127.
  • Feng S-J., Shen Y., Zheng Q-T., Shi J-L. Multi-functional direct shear apparatus for geosynthetic interfaces with its application on various GMB/GCL interfaces. Acta Geotechnica 2022; 17(4): 993-1008.
  • Frost JD., DeJong JT., Recalde M. Shear failure behavior of granular-continuum interfaces. Engineering Fracture Mechanics 2002; 69(17): 2029-2048.
  • Khan R., Latha GM. Multi-scale understanding of sand-geosynthetic interface shear response through micro-CT and shear band analysis. Geotextiles and Geomembranes 2023; 51(2): 437-453.
  • Paikowsky SG., Player CM., Connors PJ. A dual interface apparatus for testing unrestricted friction of soil along solid surfaces. ASTM, Geotechnical Testing Journal, GTJODJ 1995; 18(2): 168-193.
  • Potyondy JG. Skin friction between various soils and construction materials. Geotechnique 1961; 11(3): 339-355.
  • Uesugi M., Kishida H. Influential factors of friction between steel and dry sands. Soils and Foundations 1986; 26(2): 33-46.
  • Uesugi M., Kishida H. Frictional resistance at yield between dry sand and mild steel. Soils and Foundations 1986; 26(4): 139-149.
  • Vangla P., Gali ML. Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis. Geotextiles and Geomembranes 2016; 44(2): 592-603.
  • Ward HC. Profile Characterization: Rough Surfaces (Chapter IV). Thomas, T.R., ed., London: Longman Group Limited; 1982: 72-90.
  • Xia X., Pan Z., Qiu H., Xie X., Guo K. Effect of geomembrane liner on landfill stability under long‑term loading: interfacial shear test and numerical simulation. Environmental Science and Pollution Research 2024; 31(4): 345-355.
  • Xu G., Shi J., Li Y. Change pattern of geomembrane surface roughness for geotextile/textured geomembrane interfaces. Geotextiles and Geomembranes 2023; 51(1): 88-99.

Farklı Geomembran Astarlarının 2B Yüzey Topografyası Değişimleri: Danecik Şekli, Bağıl Yoğunluk ve Yükleme Perspektifleri

Yıl 2024, , 2346 - 2363, 10.12.2024
https://doi.org/10.47495/okufbed.1414935

Öz

Yüzey topografyası, mobilize edilmiş mekanik davranışta ve dolayısıyla sentetik geomembran astar ve doğal granüler kum içeren kompozit katmanlı sistemlerin mukavemet-stabilite performansında kritik bir rol oynamada önemlidir. Farklı geomembranların, 2 boyutlu yüzey topografisi değişiklikleri, daha önce farklı bağıl yoğunluklarda (Dr) ve farklı danecik şekillerinde (yuvarlak veya köşeli) ve ayrıca çeşitli yükleme koşullarında granüler kumun aşındırıcı etkisine maruz bırakılmış değişik polimerik reçinelerden (HDPE, LLDPE, PVC) üretilen farklı geomembran astar tabakalarının 2 boyutlu yüzey topografyası karakteristik özelliklerini tespit etmek ve belirlemek için profil kabarma ölçümleri gerçekleştirilerek deneysel olarak incelenmiştir. Topografyalardaki tepe ve vadilerden oluşan malzeme dislokasyonlarının boyutu, şekli ve aralıkları gibi pürüzlülük özellikleri de dahil olmak üzere tespit edilen profillerde açıkça görülen yüzey topoğrafik özellikleri farklı ve geomembran tipine özgüdür. Bu nedenle, HDPE, LLDPE, PVC sırasına göre geomembran astar tabakası ne kadar yumuşak ve esnek olursa, yüzey topoğrafyasının daha şiddetli tepeler ve vadiler göstermesi nedeniyle aşınma o kadar fazla gelişir. Ayrıca, kum danelerinin şekilsel özellikleri, köşeli-sivri parçacıkların geomembran astarının yüzeyine nüfuz edebilmesi ve dolayısıyla yüzey boyunca bir yörünge çizebilmesi nedeniyle daha şiddetli aşındırıcı etkinin harekete geçmesine yol açmıştır. Oysa ki, zirvelerden vadilere ve zirvelere keskin ve pürüzlü geçişlerin sergilendiği LLDPE ve PVC geomembranlar ile karşılaştırıldığında, yüzey topografyası için tepe ve çukurların boyutları ve aralıkları nispeten daha sert geomembran HDPE astar tabakasında küçük ölçekliydi; burada yüzey topografyası keskin köşelere sahip değildi, böylece tepelerden vadilere ve tepelere geçişler karşılaştırıldığında pürüzsüz ve yuvarlaktı. Geomembranların ölçülen yüzey topoğrafyaları için belirlenen ortalama pürüzlülüğün (Ra) hesaplanan değerleri aracılığıyla farklı geomembrane astarların yüzey topoğrafyası değişiminin niceliği, Ra'nın (yani, yüzeysel topografik çeşitliliğin) yük, bağıl yoğunluk, dane şeklinin parçacık sivriliği, ve geomembran astar tabakasının yumuşaklığının artışıyla arttığını ortaya çıkardı.

Kaynakça

  • Adeleke D., Kalumba D., Nolutshungu L., Oriokot J., Martinez A. The influence of asperities and surface roughness on geomembrane/geotextile interface friction angle. International Journal of Geosynthetics and Ground Engineering 2021; 20(2): 107-120.
  • Araujo GLS., Sanchez NP., Palmeira EM., Almeida MGG. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotextiles and Geomembranes 2022; 50(3): 751-763.
  • Brumund WF., Leonards GA. Experimental study of static and dynamic friction between sand and typical construction materials. Journal of Testing and Evaluation, JTEVA 1973; 1(2): 162-165.
  • DeJong JT., Frost JD. A multi-sleeve friction attachment for the cone penetrometer. ASTM, Geotechnical Testing Journal, GTJODJ 2002; 25(2): 111-127.
  • Feng S-J., Shen Y., Zheng Q-T., Shi J-L. Multi-functional direct shear apparatus for geosynthetic interfaces with its application on various GMB/GCL interfaces. Acta Geotechnica 2022; 17(4): 993-1008.
  • Frost JD., DeJong JT., Recalde M. Shear failure behavior of granular-continuum interfaces. Engineering Fracture Mechanics 2002; 69(17): 2029-2048.
  • Khan R., Latha GM. Multi-scale understanding of sand-geosynthetic interface shear response through micro-CT and shear band analysis. Geotextiles and Geomembranes 2023; 51(2): 437-453.
  • Paikowsky SG., Player CM., Connors PJ. A dual interface apparatus for testing unrestricted friction of soil along solid surfaces. ASTM, Geotechnical Testing Journal, GTJODJ 1995; 18(2): 168-193.
  • Potyondy JG. Skin friction between various soils and construction materials. Geotechnique 1961; 11(3): 339-355.
  • Uesugi M., Kishida H. Influential factors of friction between steel and dry sands. Soils and Foundations 1986; 26(2): 33-46.
  • Uesugi M., Kishida H. Frictional resistance at yield between dry sand and mild steel. Soils and Foundations 1986; 26(4): 139-149.
  • Vangla P., Gali ML. Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis. Geotextiles and Geomembranes 2016; 44(2): 592-603.
  • Ward HC. Profile Characterization: Rough Surfaces (Chapter IV). Thomas, T.R., ed., London: Longman Group Limited; 1982: 72-90.
  • Xia X., Pan Z., Qiu H., Xie X., Guo K. Effect of geomembrane liner on landfill stability under long‑term loading: interfacial shear test and numerical simulation. Environmental Science and Pollution Research 2024; 31(4): 345-355.
  • Xu G., Shi J., Li Y. Change pattern of geomembrane surface roughness for geotextile/textured geomembrane interfaces. Geotextiles and Geomembranes 2023; 51(1): 88-99.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliğinde Zemin Mekaniği
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Tanay Karademir 0000-0002-9689-2140

Yayımlanma Tarihi 10 Aralık 2024
Gönderilme Tarihi 4 Ocak 2024
Kabul Tarihi 21 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Karademir, T. (2024). 2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2346-2363. https://doi.org/10.47495/okufbed.1414935
AMA Karademir T. 2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Aralık 2024;7(5):2346-2363. doi:10.47495/okufbed.1414935
Chicago Karademir, Tanay. “2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 5 (Aralık 2024): 2346-63. https://doi.org/10.47495/okufbed.1414935.
EndNote Karademir T (01 Aralık 2024) 2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2346–2363.
IEEE T. Karademir, “2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 7, sy. 5, ss. 2346–2363, 2024, doi: 10.47495/okufbed.1414935.
ISNAD Karademir, Tanay. “2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (Aralık 2024), 2346-2363. https://doi.org/10.47495/okufbed.1414935.
JAMA Karademir T. 2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:2346–2363.
MLA Karademir, Tanay. “2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 5, 2024, ss. 2346-63, doi:10.47495/okufbed.1414935.
Vancouver Karademir T. 2D Surface Topography Alterations of Different Geomembrane Liners: Grain Shape, Relative Density and Loading Perspectives. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(5):2346-63.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.