Derleme
BibTex RIS Kaynak Göster

Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler

Yıl 2025, Cilt: 8 Sayı: 5, 2574 - 2593, 15.12.2025
https://doi.org/10.47495/okufbed.1606660

Öz

Kanser, vücut hücrelerinin kontrolsüz bir şekilde büyüyüp çoğalması sonucunda oluşan bir hastalıktır. Akciğer ve meme kanseri, dünya genelinde en sık görülen kanser türlerinden biridir ve bu nedenle kanser teşhisi, hastalığın erken evrelerinde tespit edilmesi ve tedaviye başlanması açısından kritik bir öneme sahiptir. Geleneksel teşhis yöntemleri zaman zaman yeterince hassas sonuçlar vermemektedir. Bu bağlamda, yapay zekâ destekli kanser teşhisi önemli bir rol oynamaktadır. Yapay zekâ daha geniş bir veri yelpazesini ele alarak kanser teşhisinde fark edilemeyebilecek önemli ayrıntıları algılayabilmekte ve belirli kanser türlerini erken aşamada tespit edebilmektedir. Bu derleme makalesi, 2020 ile 2023 yılları arasında yapılan çalışmalarda, akciğer ve meme kanseri tanısında kullanılan makine öğrenimi ve derin öğrenme algoritmalarının detaylı bir incelemesini sunmayı ve bu algoritmaların akciğer ve meme kanseri teşhisi performanslarını değerlendirmeyi amaçlamaktadır. Bu çalışmada 30 makale incelenmiş ve literatür taraması sonucunda LLM (Large Language Model) ve LVM (Large Vision Model)'nin onkoloji alanındaki etkinliği analiz edilmiştir. Bu modellerin potansiyelini artırmak ve onkoloji alanındaki uygulamalarda etkin bir şekilde kullanımının genişletilebilmesi amacıyla çeşitli önerilerde bulunulmuştur. Bu çalışmanın, klinik uygulamalarda algoritmaların performansını değerlendirmek için önemli bir rehber olabileceği ve LLM ile LVM’lerin tıbbi uygulamalardaki potansiyelini vurgulayarak bu alandaki ilerlemelerin önemini ve etkisini geniş bir kitleye duyurabileceği düşünülmektedir.

Kaynakça

  • Akash MB. Improved breast cancer detection using machine learning. International Journal of Scientific Research in Engineering and Management 2024; 8(5): 1-5.
  • Ak MFA comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications. Healthcare 2020; 8(2): 111.
  • Akbar W., Soomro A., Ghanghro SA., Haq MIU., Ullah M. Performance evaluation of deep learning models for breast cancer classification. 2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T), 9-11 Ocak 2023, sayfa no:1-4, Bahawalpur, Pakistan.
  • Allugunti VR. Breast cancer detection based on thermographic images using machine learning and deep learning algorithms. International Journal of Engineering in Computer Science 2022; 4(1): 49-56.
  • Altan G. Deep learning-based mammogram classification for breast cancer. International Journal of Intelligent Systems and Applications in Engineering 2020; 8(3): 171-176.
  • Alomar A., Alazzam M., Mustafa H., Mustafa A. Lung cancer detection using deep learning and explainable methods. 2023 14th International Conference on Information and Communication Systems (ICICS), 21-23 Kasım 2023, sayfa no:1-4, Irbid, Ürdün.
  • Benhassine NE., Boukaache A., Boudjehem D. A new CAD system for breast cancer classification using discrimination power analysis of wavelet coefficients and support vector machine. Journal of Mechanics in Medicine and Biology 2020; 20(06): 2050036.
  • Bouamrane A., Derdour M. Enhancing lung cancer detection and classification using machine learning and deep learning techniques: A comparative study. 2023 International Conference on Networking and Advanced Systems (ICNAS), 21-23 Ekim 2023, sayfa no:1-6, Cezayir.
  • Çifçi M. Derin öğrenme metodu kullanarak BT görüntülerinden akciğer kanseri teşhisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2022; 24(71): 487-500.
  • Das N., Borah J., Sarmah K. Diagnosis and classification of breast cancer using multiple machine learning algorithms. 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 5-6 Mayıs 2023, sayfa no:221-226, Gharuan, Hindistan. Dirik M. Machine learning-based lung cancer diagnosis. Turkish Journal of Engineering 2023; 7(4): 322-330.
  • Aziz A., Hussain SK., Ramay SA., Arshad R., Niazi M., Mushtaq Z., Ibrahim U., Khan AA., Afzal MB. Machine learning approaches for early detection of lung cancer. Journal of Computing & Biomedical Informatics 2023; 6(1): 407–418.
  • International Agency for Research on Cancer. IARC. https://www.iarc.who.int/ (Erişim Tarihi: 29 Ağustos 2024).
  • Iqbal HN., Bou Nassif A., Shahin I. Classifications of breast cancer diagnosis using machine learning. International Journal of Computers 2020; 14: 86-86.
  • Kadhim RR., Kamil MY. Comparison of machine learning models for breast cancer diagnosis. IAES International Journal of Artificial Intelligence 2023; 12(1): 415.
  • Lathakumari KR., Ramachandra AC., Avanthi UC., Ronald CB., Bhavatharani T. Classification of non-small cell lung cancer using deep learning. 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), 16-17 Haziran 2023, sayfa no:1-5, Dharwad, Hindistan.
  • Lee M., Sun Z. Machine learning methods for breast cancer diagnosis. Journal of Student Research 2022; 11(3).
  • Mahmud MI., Mamun M., Abdelgawad A. A deep analysis of transfer learning based breast cancer detection using histopathology images. 2023 10th International Conference on Signal Processing and Integrated, 23-24 Mart 2023, sayfa no:198-204, Noida, Hindistan.
  • Mahoro E., Akhloufi MA. Breast cancer classification on thermograms using deep CNN and transformers. Quantitative InfraRed Thermography Journal 2024; 21(1): 30-49.
  • Mangukiya M., Vaghani A., Savani M. Breast cancer detection with machine learning. International Journal for Research in Applied Science and Engineering Technology 2022; 10(2): 141-145.
  • Manjunathan N., Gomathi N., Muthulingam S. Early detection of breast cancer using machine learning. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 14-16 Haziran 2023, sayfa no:165-169, Coimbatore, Hindistan.
  • Mishra S., Agarwal BM. Diagnosis and classification of cancer using machine learning techniques. 2022 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), 2-4 Aralık 2022, sayfa no:1-5, Delhi, Hindistan.
  • Mohalder RD., Sarkar JP., Hossain KA., Paul L., Raihan M. A deep learning based approach to predict lung cancer from histopathological images. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), 14-16 Eylül 2021, sayfa no:1-4, Khulna, Bangladeş.
  • Naik N., Khandelwal A., Joshi M., Atre M., Wright H., Kannan K. Applying large language models for causal structure learning in non-small cell lung cancer. 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI), 3-6 Haziran 2024, sayfa no:688-693, Orlando, FL, ABD.
  • Naji MA., El Filali S., Aarika K., Benlahmar EH., Ait Abdelouhahid R., Debauche O. Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Computer Science 2021; 191: 487-492.
  • Peng CC., Wu JW. Deep learning-assisted lung cancer diagnosis from histopathology images. 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), 2-4 Haziran 2023, sayfa no:17-20, Tainan, Tayvan.
  • Promtan S., Khongthong P., Choksuchat C. Breast cancer prediction of benign and malignant tumors by classification algorithms. 2023 4th International Conference on Big Data Analytics and Practices (IBDAP), 25-27 Ağustos 2023, sayfa no:1-6, Bangkok, Tayland.
  • Salama WM., Aly MH. Deep learning in mammography images segmentation and classification: Automated CNN approach. Alexandria Engineering Journal 2021; 60(5): 4701-4709.
  • Sayın İ., Soydaş MA., Mert YE., Yarkataş A., Ergun B., Sözen Yeh S., Üvet H. Comparative analysis of deep learning architectures for breast cancer diagnosis using the BreaKHis dataset. arXiv preprint, arXiv:2309.01007.
  • Subramanian RR., Mourya RN., Reddy VP., Reddy BN., Amara S. Lung cancer prediction using deep learning framework. International Journal of Control and Automation 2020; 13(3): 154-160.
  • Telsang VA., Hegde K. Breast cancer prediction analysis using machine learning algorithms. 2020 International Conference on Communication, Computing and Industry 4.0 (C2I4), 17-18 Aralık 2020, sayfa no:1-5, Bangalore, Hindistan.
  • Thabit QQ. Deep and machine learning for improving breast cancer detection. Engineering and Technology Journal 2023; 8(12): 3156-3163.
  • Veranyurt Ü., Deveci A., Esen MF., Veranyurt O. Makine öğrenmesi teknikleriyle hastalık sınıflandırması: Random forest, k-nearest neighbour ve adaboost algoritmaları uygulaması. Uluslararası Sağlık Yönetimi ve Stratejileri Araştırma Dergisi 2020; 6(2): 275-286.
  • Zhou Z. Breast cancer diagnosis with machine learning. 4th International Conference on Computer Engineering, Information Science and Internet Technology (CII 2022), Highlights in Science, Engineering and Technology 2022; 9: 73-75.

Artificial Intelligence in Lung and Breast Cancer: Recommendations with LLM and LVM

Yıl 2025, Cilt: 8 Sayı: 5, 2574 - 2593, 15.12.2025
https://doi.org/10.47495/okufbed.1606660

Öz

Cancer is a disease caused by the uncontrolled growth and proliferation of body cells. Lung and breast cancers are among the most common types of cancer worldwide. Therefore, early detection of cancer and timely initiation of treatment are critically important. Traditional diagnostic methods may sometimes struggle to provide accurate results. In this context, artificial intelligence (AI)-assisted cancer diagnosis plays a pivotal role. AI can analyze a broader range of data and detect critical details that might otherwise go unnoticed, enabling the early detection of specific types of cancer. This review article aims to provide a detailed examination of machine learning (ML) and deep learning (DL) algorithms used in the diagnosis of lung and breast cancer in studies conducted between 2020 and 2023. A total of 30 studies were reviewed, and the effectiveness of Large Language Models (LLMs) and Large Vision Models (LVMs) in oncology was analyzed based on the literature. To further enhance the potential of these models and expand their effective use in oncology applications, various recommendations are proposed. It is thought that the study can be an important guide for evaluating the performance of algorithms in clinical applications and can convey the importance and impact of advances in this field to a wider audience by emphasizing the potential of LLMs and LVMs in medical applications.

Kaynakça

  • Akash MB. Improved breast cancer detection using machine learning. International Journal of Scientific Research in Engineering and Management 2024; 8(5): 1-5.
  • Ak MFA comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications. Healthcare 2020; 8(2): 111.
  • Akbar W., Soomro A., Ghanghro SA., Haq MIU., Ullah M. Performance evaluation of deep learning models for breast cancer classification. 2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T), 9-11 Ocak 2023, sayfa no:1-4, Bahawalpur, Pakistan.
  • Allugunti VR. Breast cancer detection based on thermographic images using machine learning and deep learning algorithms. International Journal of Engineering in Computer Science 2022; 4(1): 49-56.
  • Altan G. Deep learning-based mammogram classification for breast cancer. International Journal of Intelligent Systems and Applications in Engineering 2020; 8(3): 171-176.
  • Alomar A., Alazzam M., Mustafa H., Mustafa A. Lung cancer detection using deep learning and explainable methods. 2023 14th International Conference on Information and Communication Systems (ICICS), 21-23 Kasım 2023, sayfa no:1-4, Irbid, Ürdün.
  • Benhassine NE., Boukaache A., Boudjehem D. A new CAD system for breast cancer classification using discrimination power analysis of wavelet coefficients and support vector machine. Journal of Mechanics in Medicine and Biology 2020; 20(06): 2050036.
  • Bouamrane A., Derdour M. Enhancing lung cancer detection and classification using machine learning and deep learning techniques: A comparative study. 2023 International Conference on Networking and Advanced Systems (ICNAS), 21-23 Ekim 2023, sayfa no:1-6, Cezayir.
  • Çifçi M. Derin öğrenme metodu kullanarak BT görüntülerinden akciğer kanseri teşhisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2022; 24(71): 487-500.
  • Das N., Borah J., Sarmah K. Diagnosis and classification of breast cancer using multiple machine learning algorithms. 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 5-6 Mayıs 2023, sayfa no:221-226, Gharuan, Hindistan. Dirik M. Machine learning-based lung cancer diagnosis. Turkish Journal of Engineering 2023; 7(4): 322-330.
  • Aziz A., Hussain SK., Ramay SA., Arshad R., Niazi M., Mushtaq Z., Ibrahim U., Khan AA., Afzal MB. Machine learning approaches for early detection of lung cancer. Journal of Computing & Biomedical Informatics 2023; 6(1): 407–418.
  • International Agency for Research on Cancer. IARC. https://www.iarc.who.int/ (Erişim Tarihi: 29 Ağustos 2024).
  • Iqbal HN., Bou Nassif A., Shahin I. Classifications of breast cancer diagnosis using machine learning. International Journal of Computers 2020; 14: 86-86.
  • Kadhim RR., Kamil MY. Comparison of machine learning models for breast cancer diagnosis. IAES International Journal of Artificial Intelligence 2023; 12(1): 415.
  • Lathakumari KR., Ramachandra AC., Avanthi UC., Ronald CB., Bhavatharani T. Classification of non-small cell lung cancer using deep learning. 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), 16-17 Haziran 2023, sayfa no:1-5, Dharwad, Hindistan.
  • Lee M., Sun Z. Machine learning methods for breast cancer diagnosis. Journal of Student Research 2022; 11(3).
  • Mahmud MI., Mamun M., Abdelgawad A. A deep analysis of transfer learning based breast cancer detection using histopathology images. 2023 10th International Conference on Signal Processing and Integrated, 23-24 Mart 2023, sayfa no:198-204, Noida, Hindistan.
  • Mahoro E., Akhloufi MA. Breast cancer classification on thermograms using deep CNN and transformers. Quantitative InfraRed Thermography Journal 2024; 21(1): 30-49.
  • Mangukiya M., Vaghani A., Savani M. Breast cancer detection with machine learning. International Journal for Research in Applied Science and Engineering Technology 2022; 10(2): 141-145.
  • Manjunathan N., Gomathi N., Muthulingam S. Early detection of breast cancer using machine learning. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 14-16 Haziran 2023, sayfa no:165-169, Coimbatore, Hindistan.
  • Mishra S., Agarwal BM. Diagnosis and classification of cancer using machine learning techniques. 2022 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), 2-4 Aralık 2022, sayfa no:1-5, Delhi, Hindistan.
  • Mohalder RD., Sarkar JP., Hossain KA., Paul L., Raihan M. A deep learning based approach to predict lung cancer from histopathological images. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), 14-16 Eylül 2021, sayfa no:1-4, Khulna, Bangladeş.
  • Naik N., Khandelwal A., Joshi M., Atre M., Wright H., Kannan K. Applying large language models for causal structure learning in non-small cell lung cancer. 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI), 3-6 Haziran 2024, sayfa no:688-693, Orlando, FL, ABD.
  • Naji MA., El Filali S., Aarika K., Benlahmar EH., Ait Abdelouhahid R., Debauche O. Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Computer Science 2021; 191: 487-492.
  • Peng CC., Wu JW. Deep learning-assisted lung cancer diagnosis from histopathology images. 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), 2-4 Haziran 2023, sayfa no:17-20, Tainan, Tayvan.
  • Promtan S., Khongthong P., Choksuchat C. Breast cancer prediction of benign and malignant tumors by classification algorithms. 2023 4th International Conference on Big Data Analytics and Practices (IBDAP), 25-27 Ağustos 2023, sayfa no:1-6, Bangkok, Tayland.
  • Salama WM., Aly MH. Deep learning in mammography images segmentation and classification: Automated CNN approach. Alexandria Engineering Journal 2021; 60(5): 4701-4709.
  • Sayın İ., Soydaş MA., Mert YE., Yarkataş A., Ergun B., Sözen Yeh S., Üvet H. Comparative analysis of deep learning architectures for breast cancer diagnosis using the BreaKHis dataset. arXiv preprint, arXiv:2309.01007.
  • Subramanian RR., Mourya RN., Reddy VP., Reddy BN., Amara S. Lung cancer prediction using deep learning framework. International Journal of Control and Automation 2020; 13(3): 154-160.
  • Telsang VA., Hegde K. Breast cancer prediction analysis using machine learning algorithms. 2020 International Conference on Communication, Computing and Industry 4.0 (C2I4), 17-18 Aralık 2020, sayfa no:1-5, Bangalore, Hindistan.
  • Thabit QQ. Deep and machine learning for improving breast cancer detection. Engineering and Technology Journal 2023; 8(12): 3156-3163.
  • Veranyurt Ü., Deveci A., Esen MF., Veranyurt O. Makine öğrenmesi teknikleriyle hastalık sınıflandırması: Random forest, k-nearest neighbour ve adaboost algoritmaları uygulaması. Uluslararası Sağlık Yönetimi ve Stratejileri Araştırma Dergisi 2020; 6(2): 275-286.
  • Zhou Z. Breast cancer diagnosis with machine learning. 4th International Conference on Computer Engineering, Information Science and Internet Technology (CII 2022), Highlights in Science, Engineering and Technology 2022; 9: 73-75.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Öğrenme (Diğer)
Bölüm Derleme
Yazarlar

Berra Öz 0009-0000-9236-4394

Ali Hakan Isık 0000-0003-3561-9375

Gönderilme Tarihi 24 Aralık 2024
Kabul Tarihi 11 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Öz, B., & Isık, A. H. (2025). Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2574-2593. https://doi.org/10.47495/okufbed.1606660
AMA Öz B, Isık AH. Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2025;8(5):2574-2593. doi:10.47495/okufbed.1606660
Chicago Öz, Berra, ve Ali Hakan Isık. “Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 5 (Aralık 2025): 2574-93. https://doi.org/10.47495/okufbed.1606660.
EndNote Öz B, Isık AH (01 Aralık 2025) Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2574–2593.
IEEE B. Öz ve A. H. Isık, “Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, ss. 2574–2593, 2025, doi: 10.47495/okufbed.1606660.
ISNAD Öz, Berra - Isık, Ali Hakan. “Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (Aralık2025), 2574-2593. https://doi.org/10.47495/okufbed.1606660.
JAMA Öz B, Isık AH. Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2574–2593.
MLA Öz, Berra ve Ali Hakan Isık. “Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, 2025, ss. 2574-93, doi:10.47495/okufbed.1606660.
Vancouver Öz B, Isık AH. Akciğer ve Meme Kanserinde Yapay Zeka: LLM ve LVM ile Öneriler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2574-93.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.