Araştırma Makalesi
BibTex RIS Kaynak Göster

Laurus nobilis Esansiyel Yağının Antibakteriyel Potansiyelinin ve 1,8-Sineol ile Gentamisin Arasındaki Sinerjik Etkileşimin Metisiline Dirençli Staphylococcus aureus’a Karşı İncelenmesi

Yıl 2025, Cilt: 8 Sayı: 5, 2111 - 2132, 15.12.2025
https://doi.org/10.47495/okufbed.1608467

Öz

Bu çalışmada, ticari olarak satın alınan Laurus nobilis uçucu yağının (LnEO) metisilin-dirençli S. aureus üzerine in vitro antibakteriyel aktivitesi ve 1,8-sineol’ün gentamisin ile sinejistik etkileşiminin belirlenmesi amaçlanmıştır. LnEO, GC-MS ile karakterize edilmiş, in vitro antibakteriyel aktivitesi ise disk difüzyon metodu ile test edilmiştir. MIC ve MBC değerleri broth makro-dilüsyon yöntemi ile değerlendirilmiştir. LnEO’nın S.aureus suşunu öldürme kinetiği araştırılmıştır. 1,8-sineolün gentamisin ile etkileşimi dama tahtası yöntemiyle değerlendirilmiştir. GC-MS analizi ile toplam uçucu yağın %100'ünü oluşturan 45 uçucu bileşik belirlenmiştir. Ana bileşenin ise 1,8-cineole (%51,43) olduğu gösterilmiştir. LnEO, 1:40 ve 1:20 seyreltme oranında S. aureus’un gelişimi üzerinde herhangi bir etki göstermemiştir. LnEO, 1:1 seyreltme oranında 14,2 mm, 1:5 seyreltme oranında 11,8 mm ve 1:10 seyreltme oranında ise 8,7 mm inhibisyon zonu oluşturmuştur. S. aureus’un 1:1, 1:5 ve 1:10 seyreltme oranlarında LnEO’na duyarlı olduğu sonucuna varılmıştır. MIC ve MBC değerleri sırasıyla 1:4 ve 1:2 olarak belirlenmiştir. Öldürme zamanı deneyinde, LnEO’nın bakterisit aktiviteye sahip olduğunu gösterilmiştir. LnEO ile 10 dakika temas süresi sonunda S. aureus’un %95’inin öldüğü, 90 dakika temas sonunda ise bakteri suşunun tamamının öldüğü tespit edilmiştir. Gentamisin ile 1,8-sineol kombinasyonu S. aureus üzerinde sinerjik etki göstermiştir (FICI≤ 0.5). Elde edilen veriler, LnEO’nın ve bileşiminde bulunan 1,8-sineol’ün MRSA enfeksiyonlarıyla mücadelede etkili stratejiler geliştirilmesine yardımcı olabileceğini göstermektedir. İlaç etken maddeleri yüksek dozda tek başına kullanılmak yerine, doğal biyoaktif bileşenlerle daha düşük dozda kombine edilerek kullanıldığında olası toksik etkiyi ve direnç gelişimini azaltmasının mümkün olabileceği düşünülmektedir.

Kaynakça

  • Al-Jabri NN., Hossain MA. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 2014; 3: 247-253.
  • Altaf F., Niazi MB., Jahan Z., Ahmad T., Akram MA., Safdar A., Butt MS., Noor T., Sher F. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment 2021; 29: 156-174.
  • Ayaz C. Antibiyotik kombinasyonları. Klimik Dergisi 2001; 14(3): 140-143.
  • Aydın YA. Laurus nobilis, oregano ve cinnamomum zeylanicum uçucu yağları ilaveli antibakteriyel selülozik membranların üretilmesi. International Journal of Advances in Engineering and Pure Sciences 2019; 2: 100-106.
  • Balouiri M., Sadiki M., Ibnsouda SK. Methods for in vitro evaluating pharmaceutical analysis; a review. Journal of Pharmaceutical Analysis 2016; 6(2): 71-79.
  • Baratta MT., Dorman HJD., Deans SG., Figueiredo AC., Barroso JG., Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and Fragrance Journal 1998; 13: 235–244.
  • Barla A., Topcu G., Öksuz S., Tumen G., Kingston DGI. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chemistry 2007; 104(4): 1478-1484.
  • Bennadja S., Tlili-Ait-Kaki Y., Djahoudi A., Hadef Y., Chefrour A. Antibiotic activity of the essential oil of laurel (L. nobilis L.) on eight bacterial strains. Journal of Life Sciences 2013; 7(8): 814-819.
  • Bonapace CR., Bosso JA., Friedrich LV., White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagnostic Microbiology and Infectious Disease 2002; 44(4): 363-366.
  • Bounatirou S., Smiti S., Miguel MG., Faleiro L., Rejeb MN., Neffati M., Costa MM., Figueiredo AC., Barroso JG., Pedro LG. Chemical composition, antioxidant and antimicrobial activities of the essential oils isolated from Tunisian Thymus capitus Hoff. et Link. Food Chemistry 2007; 105: 146-155.
  • Buldain D., Gortari Castillo L., Marchetti ML., Julca Lozano K., Bandoni A., Mestorino N. Modeling the growth and death of Staphylococcus aureus against Melaleuca armillaris essential oil at different ph conditions. Antibiotics (Basel) 2021; 10(2): 222.
  • Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology 2004; 94(3): 223-253.
  • Celiktas OY., Kocabas EEH., Bedir E., Sukan FV., Ozek T., Baser KHC. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry 2007; 100: 553-559.
  • Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel) 2017; 4(3): 58.
  • CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard-eleventh edition. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute, 2012a.
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 9th ed., CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute, 2012b.
  • Culos KA., Cannon JP., Grim SA. Alternative agents to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. American Journal of Therapeutics 2013; 20(2): 200-212.
  • Çakıcı N., Demirel Zorba NN., Akçalı A. Food industry employees and staphylococcal food poisonings. The Turkish Bulletin of Hygiene and Experimental Biology 2015; 72(4): 337-350.
  • Devi KP., Nisha SA., Sakthivel R., Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology 2010; 130(1): 107-115.
  • Diaz-Tang G., Meneses EM., Patel K., Mirkin S., García-Diéguez L., Pajon C., Barraza I., Patel V., Ghali H., Tracey AP., Blanar CA., Lopatkin AJ., Smith RP. Growth productivity as a determinant of the inoculum effect for bactericidal antibiotics. Science Advances 2022; 8(50): 1-12.
  • Farhanghi A., Aliakbarlu J., Tajik H., Mortazavi N., Manafi L., Jalilzadeh-Amin G. Antibacterial interactions of pulegone and 1,8‐cineole with monolaurin ornisin against Staphylococcus aureus. Food Science & Nutrition 2022; 10(8): 2659-2666.
  • Figueiredo AC., Barroso JG., Pedro LG., Scheffer JJC. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal 2008; 23(4): 213-226.
  • Fiorini C., Fouraste I, David B., Bessière JM. Composition of the flower, leaf and stem essential oils from Laurus nobilis L. Flavour and Fragrance Journal 1997; 12(2): 91-93.
  • Gulbandilar A., Beyhan ED., Kısa EI. Investigation of nasal carriage of Staphylococcus aureus and meticilin resistance in the Kütahya Health Directorate workers. The Turkish Bulletin of Hygiene and Experimental Biology 2012; 69(3): 155-162.
  • Hriouech S., Akhmouch AA., Mzabi A., Chefchaou H., Tanghort M., Oumokhtar B., Chami N., Remmal A. The antistaphylococcal activity of amoxicillin/clavulanic acid, gentamicin, and 1,8-cineole alone or in combination and their efficacy through a rabbit model of methicillin-resistant Staphylococcus aureus osteomyelitis. Evidence-Based Complementary and Alternative Medicine 2020; 2020(1): 1-9.
  • Ibrahim RA., Berhe N., Mekuria Z., Seyoum ET., Balada-Llasat JM., Abebe T., Mariam SH., Tsige E., Fentaw Dinku S., Wang SH. Antimicrobial resistance and virulence gene profile of clinical Staphylococcus aureus: A multi-center study from Ethiopia. Infection and Drug Resistance 2023; 16: 4835-4844.
  • Jirovetz L., Buchbauer G., Ngassoum MB. GC/MS-analysis of essential oils from Cameroon plants used as spices in local foodstuff. Recent Research and Development in Agricultural and Food Chemistry 1997; 1: 241-255.
  • Krysiak ZJ., Kaniuk Ł., Metwally S., Szewczyk PK., Sroczyk EA., Peer P., Lisiecka-Graca P., Bailey RJ., Bilotti E., Stachewicz U. Nano-and microfiber PVB patches as natural oil carriers for atopic skin treatment. ACS Applied Bio Materials 2020; 3(11): 7666-7676.
  • Kulaksiz B., Er S., Üstündağ-Okur N., Saltan-Işcan G. Investigation of antimicrobial activities of some herbs containing essential oils and their mouthwash formulations. Turkish Journal of Pharmaceutical Sciences 2018; 15(3): 370-375.
  • Li X., Dong Q., He P. Synthesis and water absorbency of polyampholytic hydrogels with antibacterial activity. Journal of Applied Polymer Science 2009; 112(1): 439-446.
  • Maniki E., Kostoglou D., Paterakis N., Nikolaou A., Kourkoutas Y., Papachristoforou A., Giaouris E. Chemical composition, antioxidant, and antibiofilm properties of essential oil from Thymus capitatus plants organically cultured on the Greek Island of Lemnos. Molecules 2023; 28(3): 1154.
  • Marques MB., Brookings ES., Moser SA., Sonke PB., Waites KB. Comparative in vitro antimicrobial susceptibilities of nosocomial isolates of Acinetobacter baumannii and synergistic activities of nine antimicrobial combinations. Antimicrobial Agents and Chemotherapy 1997; 41(5): 881-885.
  • Marzouki H., Piras A., Bel Haj Salah K., Medini H., Pivetta T., Bouzid S., Marongiu B., Falconieri D. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Natural Product Research 2009; 23(4): 343-354.
  • Moreira MR., Ponce AG., de Valle CE., Roura SI. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Food Science and Technology 2005; 38(5): 565–570.
  • Mujawah AAH., Abdallah EM., Alshoumar SA., Alfarraj MI., Alajel SMI., Alharbi AL., Alsalman SA., Alhumaydhi FA. GC-MS and in vitro antibacterial potential of Cinnamomum camphora essential oil against some clinical antibiotic-resistant bacterial isolates. European Review for Medical and Pharmacological Sciences 2022; 26(15): 5372-5379.
  • Nogueira JO., Campolina GA., Batista LR., Alves E., Caetano AR., Brandão RM., Nelson DL., Cardoso MD. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiology Letters 2021; 368(9): fnab052.
  • Omidbeygi M., Barzegar M., Hamidi Z., Naghdibadi H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007; 18(12): 1518–1523.
  • Ouibrahim A., Tlili-Ait-kaki Y., Bennadja S., Amrouni S., Djahoudi AG., Djebar MR. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research 2013; 7(42): 4968-4973.
  • Owen L., Laird K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology 2018; 44(4): 414-435.
  • Özcan M., Chalchat JC. Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. Journal of Medicinal Food 2005; 8(3): 408-411.
  • Özcan M., Erkmen O. Antimicrobial activity of the essential oils of Turkish plant spices. European Food Research and Technology 2001; 212: 658-660.
  • Pala B., Bayram E., Sarı AO., Amount M. Some agrotechnical studies on laurel (Larus nobilis L.). IX. Türkiye Field Crops Congress, 12-15 September 2011, Vol. II, pp. 1203-1208, Bursa-Turkey.
  • Panizzi L., Flamini G., Cioni PL., Morelli I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. Journal of Ethnopharmacology 1993; 39(3): 167-170.
  • Paul M., Lador A., Grozinsky-Glasberg S., Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. The Cochrane Database of Systematic Reviews 2014; 2014(1): CD003344.
  • Rota C., Carramiñana JJ., Burillo J., Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. Journal of Food Protection 2004; 67(6): 1252–1256.
  • Saraiva CRN., Nonato CDFA., Camilo CJ., de Araújo ACJ., Rodrigues FFG., Coutinho HDM., da Costa JGM. Chemical profile and inhibition of MDR bacteria by the essential oil of Laurus nobilis L. and its major compound 1, 8-cineol. Biocatalysis and Agricultural Biotechnology 2021; 36: 102148.
  • Schürmann M., Oppel F., Gottschalk M., Büker B., Jantos CA., Knabbe C., Hütten A., Kaltschmidt B., Kaltschmidt C., Sudhoff H. The therapeutic effect of 1,8-cineol on pathogenic bacteria species present in chronic rhinosinusitis. Frontiers in Microbiology 2019; 10: 2325.
  • Seow YX., Yeo CR., Chung HL., Yuk HG. Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition 2014; 54(5): 625-644.
  • Sharifi-Rad J., Sureda A., Tenore GC., Daglia M., Sharifi-Rad M., Valussi M., Tundis R., Sharifi-Rad M., Loizzo MR., Ademiluyi AO., Sharifi-Rad R., Ayatollahi SA., Iriti M. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 2017; 22(1): 70.
  • Singh N., Singh RK., Bhunia AK., Stroshine RL. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensmittel-Wissenschaft und -Technologie 2002; 35: 720-729.
  • Sroczyk EA., Berniak K., Jaszczur M., Stachewicz U. Topical electrospun patches loaded with oil for effective gamma linoleic acid transport and skin hydration towards atopic dermatitis skincare. Chemical Engineering Journal 2022; 429: 132256.
  • Topçu S., Şeker MG. In vitro antimicrobial effects and inactivation mechanisms of 5,8-dihydroxy-1,4-napthoquinone. Antibiotics (Basel, Switzerland) 2022; 11(11): 1537.
  • Trombetta D., Castelli F., Sarpietro MG., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 2005; 49(6): 2474-2478.
  • Tsuchido TE., Hiraoka T., Takano M., Shibasaki I. Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short-and medium-chain fatty acids. Journal of Bacteriology 1985; 162(1): 42-46.
  • Verdinan-rizi M. Chemical composition and larvicidal activity of the essential oil of Laurus nobilis L. from Iranian. Journal of Pharmaceutical Sciences 2009; 5(1): 47-50.
  • Yalçın H., Anik M., Sanda MA., Cakir A. Gas chromatography/mass spectrometry analysis of Laurus nobilis L. essential oil composition of Northern Cyprus. Journal of Medicinal Food 2007; 10(4): 715-719.
  • Yáñez Rueda XY., Cuadro Mogollón OFC. Chemical composition and antibacterial activity of the essential oil of Eucalyptus globulus and E. camaldulensis of three zones of Pamplona (Colombia). Bistua: Revista de la facultad de Ciencias Basicas 2012; 10(1): 52-61.
  • Yang SK., Yusoff K., Mai CW., Lim WM., Yap WS., Lim SH., Lai KS. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 2017; 22(11): 1733.
  • Yap PS., Yiap BC., Ping HC., Lim SH. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal 2014; 8: 6.
  • Yilmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences 2012; 42(2): 1423-1429.

Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus

Yıl 2025, Cilt: 8 Sayı: 5, 2111 - 2132, 15.12.2025
https://doi.org/10.47495/okufbed.1608467

Öz

This study aims to determine the in vitro antibacterial activity of the commercially purchased Laurus nobilis essential oil (LnEO) and the synergistic interaction of the 1,8-cineole with gentamicin against methicillin-resistant S. aureus. The chemical profile of the LnEO was evaluated by GC-MS. In vitro antibacterial activity of the LnEO was tested by the disk diffusion method. MIC and MBC values were assessed using the broth macro-dilution method. The killing kinetics of the LnEO against S. aureus were investigated. The interaction of the 1,8-cineole with gentamicin was assessed by the checkerboard method. 45 volatile compounds constituting 100% of the total essential oil were determined. 1,8-cineol (51.43%) was shown as the main component. The LnEO does not affect the growth of S. aureus at 1:40 and 1:20 dilution ratios. The LnEO formed an inhibition zone of 14.2 mm at a 1:1 dilution ratio, 11.8 mm at 1:5, and 8.7 mm at 1:10. It was concluded that S. aureus is sensitive to the LnEO at dilution ratios of 1:1, 1:5, and 1:10. The MIC and the MBC values were determined as 1:4, and 1:2, respectively. Time-kill assay has shown that the LnEO has a bactericidal activity. It was determined that 95% of S. aureus died after 10 minutes of contact with the LnEO, and after 90 minutes of contact, the entire bacterial strain was killed. The combination of gentamicin and 1,8-cineole showed a synergistic effect on S. aureus (FICI≤ 0.5). Obtained data show that LnEO and the 1,8-cineole contained in its composition may help develop effective strategies to combat MRSA infections. It is thought that it may be possible to reduce possible toxic effects and resistance development when drug-active ingredients are used in combination with natural bioactive components at lower doses instead of being used alone at high doses.

Etik Beyan

The author reports that formal ethics committee approval is not required for this type of study.

Destekleyen Kurum

No funding or support was used in this study.

Teşekkür

The author would like to thank YETEM-INNOVATIVE TECHNOLOGIES APPLICATION AND RESEARCH CENTER for expert cooperation in performing the GC-MS analysis.

Kaynakça

  • Al-Jabri NN., Hossain MA. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 2014; 3: 247-253.
  • Altaf F., Niazi MB., Jahan Z., Ahmad T., Akram MA., Safdar A., Butt MS., Noor T., Sher F. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment 2021; 29: 156-174.
  • Ayaz C. Antibiyotik kombinasyonları. Klimik Dergisi 2001; 14(3): 140-143.
  • Aydın YA. Laurus nobilis, oregano ve cinnamomum zeylanicum uçucu yağları ilaveli antibakteriyel selülozik membranların üretilmesi. International Journal of Advances in Engineering and Pure Sciences 2019; 2: 100-106.
  • Balouiri M., Sadiki M., Ibnsouda SK. Methods for in vitro evaluating pharmaceutical analysis; a review. Journal of Pharmaceutical Analysis 2016; 6(2): 71-79.
  • Baratta MT., Dorman HJD., Deans SG., Figueiredo AC., Barroso JG., Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and Fragrance Journal 1998; 13: 235–244.
  • Barla A., Topcu G., Öksuz S., Tumen G., Kingston DGI. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chemistry 2007; 104(4): 1478-1484.
  • Bennadja S., Tlili-Ait-Kaki Y., Djahoudi A., Hadef Y., Chefrour A. Antibiotic activity of the essential oil of laurel (L. nobilis L.) on eight bacterial strains. Journal of Life Sciences 2013; 7(8): 814-819.
  • Bonapace CR., Bosso JA., Friedrich LV., White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagnostic Microbiology and Infectious Disease 2002; 44(4): 363-366.
  • Bounatirou S., Smiti S., Miguel MG., Faleiro L., Rejeb MN., Neffati M., Costa MM., Figueiredo AC., Barroso JG., Pedro LG. Chemical composition, antioxidant and antimicrobial activities of the essential oils isolated from Tunisian Thymus capitus Hoff. et Link. Food Chemistry 2007; 105: 146-155.
  • Buldain D., Gortari Castillo L., Marchetti ML., Julca Lozano K., Bandoni A., Mestorino N. Modeling the growth and death of Staphylococcus aureus against Melaleuca armillaris essential oil at different ph conditions. Antibiotics (Basel) 2021; 10(2): 222.
  • Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology 2004; 94(3): 223-253.
  • Celiktas OY., Kocabas EEH., Bedir E., Sukan FV., Ozek T., Baser KHC. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry 2007; 100: 553-559.
  • Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel) 2017; 4(3): 58.
  • CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard-eleventh edition. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute, 2012a.
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 9th ed., CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute, 2012b.
  • Culos KA., Cannon JP., Grim SA. Alternative agents to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. American Journal of Therapeutics 2013; 20(2): 200-212.
  • Çakıcı N., Demirel Zorba NN., Akçalı A. Food industry employees and staphylococcal food poisonings. The Turkish Bulletin of Hygiene and Experimental Biology 2015; 72(4): 337-350.
  • Devi KP., Nisha SA., Sakthivel R., Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology 2010; 130(1): 107-115.
  • Diaz-Tang G., Meneses EM., Patel K., Mirkin S., García-Diéguez L., Pajon C., Barraza I., Patel V., Ghali H., Tracey AP., Blanar CA., Lopatkin AJ., Smith RP. Growth productivity as a determinant of the inoculum effect for bactericidal antibiotics. Science Advances 2022; 8(50): 1-12.
  • Farhanghi A., Aliakbarlu J., Tajik H., Mortazavi N., Manafi L., Jalilzadeh-Amin G. Antibacterial interactions of pulegone and 1,8‐cineole with monolaurin ornisin against Staphylococcus aureus. Food Science & Nutrition 2022; 10(8): 2659-2666.
  • Figueiredo AC., Barroso JG., Pedro LG., Scheffer JJC. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal 2008; 23(4): 213-226.
  • Fiorini C., Fouraste I, David B., Bessière JM. Composition of the flower, leaf and stem essential oils from Laurus nobilis L. Flavour and Fragrance Journal 1997; 12(2): 91-93.
  • Gulbandilar A., Beyhan ED., Kısa EI. Investigation of nasal carriage of Staphylococcus aureus and meticilin resistance in the Kütahya Health Directorate workers. The Turkish Bulletin of Hygiene and Experimental Biology 2012; 69(3): 155-162.
  • Hriouech S., Akhmouch AA., Mzabi A., Chefchaou H., Tanghort M., Oumokhtar B., Chami N., Remmal A. The antistaphylococcal activity of amoxicillin/clavulanic acid, gentamicin, and 1,8-cineole alone or in combination and their efficacy through a rabbit model of methicillin-resistant Staphylococcus aureus osteomyelitis. Evidence-Based Complementary and Alternative Medicine 2020; 2020(1): 1-9.
  • Ibrahim RA., Berhe N., Mekuria Z., Seyoum ET., Balada-Llasat JM., Abebe T., Mariam SH., Tsige E., Fentaw Dinku S., Wang SH. Antimicrobial resistance and virulence gene profile of clinical Staphylococcus aureus: A multi-center study from Ethiopia. Infection and Drug Resistance 2023; 16: 4835-4844.
  • Jirovetz L., Buchbauer G., Ngassoum MB. GC/MS-analysis of essential oils from Cameroon plants used as spices in local foodstuff. Recent Research and Development in Agricultural and Food Chemistry 1997; 1: 241-255.
  • Krysiak ZJ., Kaniuk Ł., Metwally S., Szewczyk PK., Sroczyk EA., Peer P., Lisiecka-Graca P., Bailey RJ., Bilotti E., Stachewicz U. Nano-and microfiber PVB patches as natural oil carriers for atopic skin treatment. ACS Applied Bio Materials 2020; 3(11): 7666-7676.
  • Kulaksiz B., Er S., Üstündağ-Okur N., Saltan-Işcan G. Investigation of antimicrobial activities of some herbs containing essential oils and their mouthwash formulations. Turkish Journal of Pharmaceutical Sciences 2018; 15(3): 370-375.
  • Li X., Dong Q., He P. Synthesis and water absorbency of polyampholytic hydrogels with antibacterial activity. Journal of Applied Polymer Science 2009; 112(1): 439-446.
  • Maniki E., Kostoglou D., Paterakis N., Nikolaou A., Kourkoutas Y., Papachristoforou A., Giaouris E. Chemical composition, antioxidant, and antibiofilm properties of essential oil from Thymus capitatus plants organically cultured on the Greek Island of Lemnos. Molecules 2023; 28(3): 1154.
  • Marques MB., Brookings ES., Moser SA., Sonke PB., Waites KB. Comparative in vitro antimicrobial susceptibilities of nosocomial isolates of Acinetobacter baumannii and synergistic activities of nine antimicrobial combinations. Antimicrobial Agents and Chemotherapy 1997; 41(5): 881-885.
  • Marzouki H., Piras A., Bel Haj Salah K., Medini H., Pivetta T., Bouzid S., Marongiu B., Falconieri D. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Natural Product Research 2009; 23(4): 343-354.
  • Moreira MR., Ponce AG., de Valle CE., Roura SI. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Food Science and Technology 2005; 38(5): 565–570.
  • Mujawah AAH., Abdallah EM., Alshoumar SA., Alfarraj MI., Alajel SMI., Alharbi AL., Alsalman SA., Alhumaydhi FA. GC-MS and in vitro antibacterial potential of Cinnamomum camphora essential oil against some clinical antibiotic-resistant bacterial isolates. European Review for Medical and Pharmacological Sciences 2022; 26(15): 5372-5379.
  • Nogueira JO., Campolina GA., Batista LR., Alves E., Caetano AR., Brandão RM., Nelson DL., Cardoso MD. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiology Letters 2021; 368(9): fnab052.
  • Omidbeygi M., Barzegar M., Hamidi Z., Naghdibadi H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007; 18(12): 1518–1523.
  • Ouibrahim A., Tlili-Ait-kaki Y., Bennadja S., Amrouni S., Djahoudi AG., Djebar MR. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research 2013; 7(42): 4968-4973.
  • Owen L., Laird K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology 2018; 44(4): 414-435.
  • Özcan M., Chalchat JC. Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. Journal of Medicinal Food 2005; 8(3): 408-411.
  • Özcan M., Erkmen O. Antimicrobial activity of the essential oils of Turkish plant spices. European Food Research and Technology 2001; 212: 658-660.
  • Pala B., Bayram E., Sarı AO., Amount M. Some agrotechnical studies on laurel (Larus nobilis L.). IX. Türkiye Field Crops Congress, 12-15 September 2011, Vol. II, pp. 1203-1208, Bursa-Turkey.
  • Panizzi L., Flamini G., Cioni PL., Morelli I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. Journal of Ethnopharmacology 1993; 39(3): 167-170.
  • Paul M., Lador A., Grozinsky-Glasberg S., Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. The Cochrane Database of Systematic Reviews 2014; 2014(1): CD003344.
  • Rota C., Carramiñana JJ., Burillo J., Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. Journal of Food Protection 2004; 67(6): 1252–1256.
  • Saraiva CRN., Nonato CDFA., Camilo CJ., de Araújo ACJ., Rodrigues FFG., Coutinho HDM., da Costa JGM. Chemical profile and inhibition of MDR bacteria by the essential oil of Laurus nobilis L. and its major compound 1, 8-cineol. Biocatalysis and Agricultural Biotechnology 2021; 36: 102148.
  • Schürmann M., Oppel F., Gottschalk M., Büker B., Jantos CA., Knabbe C., Hütten A., Kaltschmidt B., Kaltschmidt C., Sudhoff H. The therapeutic effect of 1,8-cineol on pathogenic bacteria species present in chronic rhinosinusitis. Frontiers in Microbiology 2019; 10: 2325.
  • Seow YX., Yeo CR., Chung HL., Yuk HG. Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition 2014; 54(5): 625-644.
  • Sharifi-Rad J., Sureda A., Tenore GC., Daglia M., Sharifi-Rad M., Valussi M., Tundis R., Sharifi-Rad M., Loizzo MR., Ademiluyi AO., Sharifi-Rad R., Ayatollahi SA., Iriti M. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 2017; 22(1): 70.
  • Singh N., Singh RK., Bhunia AK., Stroshine RL. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensmittel-Wissenschaft und -Technologie 2002; 35: 720-729.
  • Sroczyk EA., Berniak K., Jaszczur M., Stachewicz U. Topical electrospun patches loaded with oil for effective gamma linoleic acid transport and skin hydration towards atopic dermatitis skincare. Chemical Engineering Journal 2022; 429: 132256.
  • Topçu S., Şeker MG. In vitro antimicrobial effects and inactivation mechanisms of 5,8-dihydroxy-1,4-napthoquinone. Antibiotics (Basel, Switzerland) 2022; 11(11): 1537.
  • Trombetta D., Castelli F., Sarpietro MG., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 2005; 49(6): 2474-2478.
  • Tsuchido TE., Hiraoka T., Takano M., Shibasaki I. Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short-and medium-chain fatty acids. Journal of Bacteriology 1985; 162(1): 42-46.
  • Verdinan-rizi M. Chemical composition and larvicidal activity of the essential oil of Laurus nobilis L. from Iranian. Journal of Pharmaceutical Sciences 2009; 5(1): 47-50.
  • Yalçın H., Anik M., Sanda MA., Cakir A. Gas chromatography/mass spectrometry analysis of Laurus nobilis L. essential oil composition of Northern Cyprus. Journal of Medicinal Food 2007; 10(4): 715-719.
  • Yáñez Rueda XY., Cuadro Mogollón OFC. Chemical composition and antibacterial activity of the essential oil of Eucalyptus globulus and E. camaldulensis of three zones of Pamplona (Colombia). Bistua: Revista de la facultad de Ciencias Basicas 2012; 10(1): 52-61.
  • Yang SK., Yusoff K., Mai CW., Lim WM., Yap WS., Lim SH., Lai KS. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 2017; 22(11): 1733.
  • Yap PS., Yiap BC., Ping HC., Lim SH. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal 2014; 8: 6.
  • Yilmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences 2012; 42(2): 1423-1429.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bulaşıcı Ajanlar
Bölüm Araştırma Makalesi
Yazarlar

Demet Hançer Aydemir

Gönderilme Tarihi 27 Aralık 2024
Kabul Tarihi 20 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Hançer Aydemir, D. (2025). Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2111-2132. https://doi.org/10.47495/okufbed.1608467
AMA Hançer Aydemir D. Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2025;8(5):2111-2132. doi:10.47495/okufbed.1608467
Chicago Hançer Aydemir, Demet. “Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 5 (Aralık 2025): 2111-32. https://doi.org/10.47495/okufbed.1608467.
EndNote Hançer Aydemir D (01 Aralık 2025) Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2111–2132.
IEEE D. Hançer Aydemir, “Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, ss. 2111–2132, 2025, doi: 10.47495/okufbed.1608467.
ISNAD Hançer Aydemir, Demet. “Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (Aralık2025), 2111-2132. https://doi.org/10.47495/okufbed.1608467.
JAMA Hançer Aydemir D. Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2111–2132.
MLA Hançer Aydemir, Demet. “Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, 2025, ss. 2111-32, doi:10.47495/okufbed.1608467.
Vancouver Hançer Aydemir D. Exploring the Antibacterial Potential of Laurus nobilis Essential Oil and the Synergistic Interaction with 1,8-Cineole and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2111-32.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.