Araştırma Makalesi
BibTex RIS Kaynak Göster

Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması

Yıl 2025, Cilt: 8 Sayı: 5, 2057 - 2078, 15.12.2025
https://doi.org/10.47495/okufbed.1622050

Öz

Yaşadığımız evrende iklim değişikliğine sebep olan sera gazlarının çevresel etkilerinin azaltılması için enerji verimli yapıların üretilmesi kaçınılmaz olmaktadır. Enerji tüketiminin büyük çoğunluğunu teşkil eden yapıların üretiminde kullanılan yapı malzemelerinde, binaların ısıtma ve soğutma yükünün azaltarak termal enerji depolamak için faz değiştiren malzeme kullanımı öne çıkmaktadır. Faz değiştiren malzemeler kapsüllenmiş ya da kapsülsüz olarak yapı malzemelerinin yalıtım ve ısı aktarım özelliklerini geliştirmek için kullanılabilmektedir. Bu çalışmada farklı tip faz değiştiren malzeme kullanım etkisini gözlemleyebilmek için belirli oranlarda (%0, %2,5, %5) nano-kapsüllenmiş ve kapsülsüz olmak üzere faz değiştiren malzemenin (FDM) iki farklı tipi çimento esaslı harca dahil edilerek etkisi araştırılmıştır. FDM katkılı harçların taze halde çökme-yayılması ve viskoziteleri belirlenirken, sertleşmiş harçlarda ultrases geçiş hızı, elektriksel özdirenç, basınç ve eğilme dayanımı değişimleri araştırılmıştır. Elde edilen bulgulara göre, faz değiştiren malzemenin harçlarda kullanılmasıyla fiziksel ve mekanik özeliklerde azalma görülmüş olup, bu azalma kapsüllü FDM kullanılan harçlarda daha fazladır.

Kaynakça

  • Agyenim F., Hewitt N., Eames P., Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 2010; 14(2): 615-628.
  • Albdour SA., Haddad Z., Sharaf OZ., Alazzam A., Abu-Nada E. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage, Fundamentals, recent advances, and future directions. Progress in Energy and Combustion Science 2022; 93: 101037.
  • Alsaadawi MM., Amin M., Tahwia AM. Thermal, mechanical and microstructural properties of sustainable concrete incorporating Phase change materials. Construction and Building Materials 2022; 356: 129300.
  • Anisur MR., Mahfuz MH., Kibria MA., Saidur R., Metselaar IHSC., Mahlia TMI. Curbing global warming with phase change materials for energy storage. Renewable and Sustainable Energy Reviews 2013; 18: 23-30.
  • ASTM C1760. Standard test method for bulk electrical conductivity of hardened concrete, ASTM International, West Conshohocken, PA, 2012.
  • Baccega E., Bottarelli M., Cesari S. Addition of granular phase change materials (PCMs) and graphene to a cement-based mortar to improve its thermal performances. Applied Thermal Engineering 2023; 229: 120582.
  • Baetens R., Jelle BP., Gustavsen A. Phase change materials for building applications, A state-of-the-art review. Energy and Buildings 2010; 42: 1361-1368.
  • Barreneche C. Evaluation in the macroscale. Applied Energy 2013; 109: 428-432.
  • Biwan X., Hongyan M., Zeyu L., Zongjin L. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Applied Energy 2015; 160: 358-367.
  • Boh B., Sumiga B. Microencapsulation technology and its applications in building construction materials. Materials and Geoenvironment 2008; 55: 329-344.
  • Bondareva NS., Sheremet MA. Heat transfer performance in a concrete block containing a phase change material for thermal comfort in buildings. Energy and Buildings 2022; 256: 111715.
  • Cabeza LF., Castell A., Barreneche C., Gracia D., Fernández I. Materials used as PCM in thermal energy storage in buildings, a review. Renewable and Sustainable Energy Reviews 2011; 15: 1675-1695.
  • Cabeza LF., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Building 2007; 39: 113-119.
  • Cheng J., Kang M., Lin W., Liang C., Liu Y., Wang Y., Niu S., Zhang F. Preparation and characterization of phase change material microcapsules with modified halloysite nanotube for controlling temperature in the building. Construction and Building Materials 2023; 362: 129764.
  • Cui Y., Xie J., Liu J. Review of phase change materials integrated in building walls for energy saving. Procedia Engineering 2015; 121: 763-770.
  • Cui Y., Xie J., Liu J., Wang J., Chen S. A review on phase change material application in building. Advances in Mechanical Engineering 2017; 9(6): 1687814017700828.
  • Das R., Gandhi ISR., Muthukumar P. Use of agglomerated Micro-encapsulated phase change material in cement mortar as thermal energy storage material for building. Materials Today: Proceedings 2022; 65(2): 808-814.
  • Djamai ZI., Salvatore F., Si Larbi A., Cai G., El Mankibi M. Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars. Cem. Concr. Res. 2019; 119: 51-63.
  • Dora S., Mini KM. Performance assessment of capric acid-ethyl alcohol/expanded vermiculite phase change material incorporated cement mortar for thermal insulation in buildings. Journal of Energy Storage 2023; 72(C): 108550.
  • Drissi S., Mo KH., Falchetto AC., Ling TC. Understanding the compressive strength degradation mechanism of cement-paste incorporating phase change material. Cem. Concr. Compos. 2021; 124: 104249.
  • Dutil Y., Rousse D., Lassue S. Modeling phase change materials behavior in building applications, comments on material characterization and model validation. Renewable and Sustainable Energy Reviews 2014; 61: 132-135.
  • Evola G., Marletta L., Sicurella F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment 2013; 59: 517-527.
  • Fenollera M., Míguez J., Goicoechea I., Lorenzo J., Ángel Álvarez M. The influence of phase change materials on the properties of self-compacting concrete. Materials 2013; 6: 3530-3546.
  • Frahat NB., Amin M., Heniegal AM., Omar IOM. Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings. Construction and Building Materials 2023; 391: 131844.
  • Gbekou FK., Benzarti K., Boudenne A., Eddhahak A., Duc M. Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. Construction and Building Materials 2022; 352: 129056.
  • Goia F., Bianco L., Cascone Y. Experimental analysis of an advanced dynamic glazing prototype integrating PCM and thermotropic layers. Energy Proced 2014; 48: 1272-1281.
  • Guardia C., Barluenga G., Palomar I. Evaluation of the energy storage capacity of phase change material cement-lime mortars by using heat flux meters and ultrasonic pulse transmission. Journal of Energy Storage 2022; 50: 104674.
  • Hao L., Xiao J., Sun J., Xia B., Cao W. Thermal conductivity of 3D printed concrete with recycled fine aggregate composite phase change materials. Journal of Cleaner Production 2022; 364: 132598.
  • Hattan HA., Madhkhan M., Marani A. Thermal and mechanical properties of building external walls plastered with cement mortar incorporating shape-stabilized phase change materials (SSPCMs). Construction and Building Materials 2021; 270: 121385.
  • Hornbostel K., Larsen CK., Geiker MR. Relationship between concrete resistivity and corrosion rate-A literature review. Cement and Concrete Composites 2013; 39: 60-72.
  • Hunger M., Entrop AG., Mandilaras I., Brouwers HJH., Founti M. The behaviour of self-compacting concrete microencapsulated phase change materials. Cement & Concrete Composites 2009; 31: 731-743.
  • Illampas R., Rigopoulos I., Ioannou I. Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar. Journal of Building Engineering 2021; 40: 102328.
  • Jacob R., Bruno F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews 2015; 48: 79–87.
  • Kong X., Lu S., Li Y. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application. Energy Buildings 2014; 81: 404-415.
  • Kumar GN., Ram VV., Parameshwaran R. Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application. Construction and Building Materials 2023; 385: 13148.
  • Kumar R., Misra M., Kumar R., Gupta D., Khatri P., Tak B. Phase change materials, technology status and potential defence applications. Defence Science Journal 2011; 61: 576-582.
  • Kylili A., Fokaides PA. Life cycle assessment (LCA) of phase change materials (PCMs) for building applications. A review. Journal of Building Engineering 2016; 6: 133-143.
  • Lee T., Hawes DW., Banu D., Feldman D. Control aspects of latent heat storage and recovery in concrete. Solar Energy Materials and Solar Cells 2000; 62(3): 217-237.
  • Lin Y., Jia Y., Alva G., Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews 2018; 82: 2730-2742.
  • Ma Y., Sun S., Li J., Tang G. Preparation and thermal reliabilities of microencapsulated phase change materials with binary cores and acrylate-based polymer shells. Thermochim Acta 2014; 588: 38-46.
  • Mandilaras I., Stamatiadou M., Katsourinis D., Zannis G., Founti M. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment 2013; 61: 93-103.
  • Marani A., Zhang L., Nehdi ML. Design of concrete incorporating microencapsulated phase change materials for clean energy, A ternary machine learning approach based on generative adversarial network. Engineering Applications of Artificial Intelligence 2023; 118: 105652.
  • Marani A., Zhang L., Nehdi ML. Design of concrete incorporating microencapsulated phase change materials for clean energy, A ternary machine learning approach based on generative adversarial networks”. Engineering Applications of Artificial Intelligence 2023; 118: 105652.
  • Mira-Hernández C., Travaglini G., Dolfi A., Mancin S. Electrical properties of phase change materials for electrical impedance-based sensing of the liquid fraction. Journal of Energy Storage 2025; 113: 115625.
  • Moustapha BE., Bonnet S., Khelidj A., Maranzana N., Froelich D., Khalifa A., Babah IA. Effects of microencapsulated phase change materials on chloride ion transport properties of geopolymers incorporating slag and, metakaolin, and cement-based mortars. Journal of Building Engineering 2023; 74: 106887.
  • Muraleedharan M., Nadir Y. Geopolymer mortar integrated with phase change materials for improvement of thermal efficiency in buildings: A review. Materials Today: Proceedings 2021; 44(1): 878-885.
  • Peng L., Wu H., Mao Q. Numerical and experimental study on the performance of a thermal energy storage in a solar building. Journal of Energy Storage 2023; 61: 106745.
  • Pilehvar S., Szczotok AM., Carmona M., Pamies R., Kjøniksen AL. The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars. J Am Ceram Soc. 2020, 103: 5852-5869.
  • Pires L., Silva PD., Castro Gomes JP. Experimental study of an innovative element for passive cooling of buildings. Sustain. Energy Technol. Assess. 2013; 4: 29-35.
  • Qiu X., Lu L., Wang J., Tang G., Song G. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shell. Solar Energy Materials and Solar Cells 2014; 128: 102-111.
  • Raj VAA., Velraj R. Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews 2010; 14: 2819-2829.
  • Ramakrishnan S., Sanjayan J., Wang X., Alam M., Wilson J. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Applied Energy 2015; 157: 85-94.
  • Rao Y., Lin G., Luo Y., Chen S., Wang L. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer. Heat Transfer-Asian Research 2007; 36: 28-37.
  • Rebelo F., Figueiredo A., Vicente R., Ferreira VM. Study of a thermally enhanced mortar incorporating phase change materials for overheating reduction in buildings. Journal of Energy Storage 2022; 46: 103876.
  • Sarcinella A., Barroso de Aguiar JL., Jesus C., Frigione M. Thermal properties of PEG-based form-stable phase change materials (PCMs) incorporated in mortars for energy efficiency of buildings. Journal of Energy Storage 2023; 67: 107545.
  • Schossig P., Henning HM., Gschwander S., Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells 2005; 89(2-3): 297–306.
  • Shahzad Q., Shen J., Naseem R., Yao Y., Waqar S., Liu W. Influence of phase change material on concrete behavior for construction 3D printing. Construction and Building Materials 2021; 309: 125121.
  • Soares N., Costa JJ., Gaspar AR., Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings `energy efficiency. Energy and Buildings 2013; 59: 82-103.
  • Tan FL., Hosseinizadeh SF., Khodadadi JM., Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer 2009; 52: 3464-3472.
  • Tseng YH., Fang MH., Tsai PS., Yang YM. Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. Journal of Microencapsulation 2005; 22: 37-46.
  • TS EN 12350-6, 2010, Beton – Taze beton deneyleri-Bölüm 6: Yoğunluk. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3, 2010, Beton-Sertleşmiş beton deneyleri-Bölüm 3: deney numunelerinde basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-5, 2010, Beton-Sertleşmiş beton deneyleri-Bölüm 5: deney numunelerinin eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Tyagi VV., Pandey AK., Buddhi D. Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings. Energy and Buildings 2016; 117: 44-52.
  • Vicente R., Silva T. Brick masonry walls with PCM macrocapsules, an experimental approach. Applied Thermal Engineering 2014; 67: 24-34.
  • Wang H., Wang JP., Wang X., Li W., Zhang X., Preparation and properties of microencapsulated phase change materials containing two-phase core materials. Industrial & Engineering Chemistry Research 2013; 52: 14706-14712.
  • Waqas A., Ud Din Z. Phase change material (PCM) storage for free cooling of buildings-a review. Renewable and Sustainable Energy Reviews 2013; 18: 607-625.
  • Weinlader H., Beck A., Fricke J. PCM-facade-panel for daylighting and room heating. Solar Energy 2005; 78: 177-186.
  • Yahay NA., Ahmad H. Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings. Procedia Engineering 2011; 20: 238-244.
  • Yan B., Lu H., Li M., Wang X., Wang Z., Pi M., Cui W., Ran R. Preparation of phase change microcapsules with high thermal storage and temperature sensitive for thermal management. Journal of Energy Storage 2023; 64: 107003.
  • You M., Wang X., Zhang X., Zhang L., Wang J. Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. Journal of Polymer Research 2011; 18: 49-58.
  • Yu B., Li S., Zhu H., Jiang Q., Wang D., Chen Y. A composite phase change material for improving the freeze–thaw resistance performance of cement mortars. Construction and Building Materials 2023; 387: 131657.
  • Yu K., Liu Y., Jia M., Wang C., Yang Y. Thermal energy storage cement mortar containing encapsulated hydrated salt/fly ash cenosphere phase change material. Thermo-mechanical properties and energy saving analysis. Journal of Energy Storage 2022, 51: 104388.
  • Yu XK., Tao YB. Improvement of thermal cycle stability of paraffin/expanded graphite composite phase change materials and its application in thermal management. Journal of Energy Storage 2023; 63: 107019.
  • Yuan Y., Zhang N. Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage. Materials Letters 2014; 125: 154-157.
  • Zastawna-Ruminand A., Nowak K. Experimental thermal performance analysis of building components containing phase change material (PCM). Procedia Engineering 2015; 108: 428-435.
  • Zebari Z., Bedirhanoğlu İ., Aydın M. Beton basınç dayanımının ultrasonik ses dalgası yayılma hızı ile tahmin edilmesi. Dicle Üniversitesi Mühendislik Fakültesi 2017; 8: 1.
  • Zhang GH., Bon SAF., Zhao CY. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Solar Energy 2012; 86: 1149-1154.
  • Zhang P., Ma ZW., Wang RZ. An overview of phase change material slurries. MPCS and CHS, Renewable and Sustainable Energy Reviews 2010; 14: 598-614.
  • Zhang XX., Tao XM., Yick KL., Wang XC. Structure and thermal stability of microencapsulated phase-change materials. Colloid & Polymer Science 2004; 282: 330-336.
  • Zhao CY., Zhang GH. Review on microencapsulated phase change materials (MEPCMs), Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews 2011; 15(8): 3813-3832.
  • Zhu L., Dang F., Ding W., Sang G., Wang Q., Jiao K. Thermo-physical properties of light-weight aggregate concrete integrated with micro-encapsulation phase change materials, Experimental investigation and theoretical model. Journal of Building Engineering 2023; 69: 106309.
  • Zhu N., Ma Z., Wang S. Dynamic characteristics and energy performance of buildings using phase change materials, a review. Energy Conversion and Management 2009; 50: 3169-3181.

Investigation of the Effect of Phase Change Material Type on Rheological, Physical and Mechanical Properties of Cement Based Mortars

Yıl 2025, Cilt: 8 Sayı: 5, 2057 - 2078, 15.12.2025
https://doi.org/10.47495/okufbed.1622050

Öz

It is inevitable to produce energy efficient structures in order to reduce the environmental effects of greenhouse gases that cause climate change in the universe we live in. In the construction materials used in the production of buildings, which constitute the majority of energy consumption, the use of phase-changing materials to store thermal energy by reducing the heating and cooling load of the buildings comes to the fore. Phase technology can be used to expand the capacity and heat dissipation of building materials, with or without encapsulation. In this study, in order to observe the effect of using different types of phase change materials, the effect was investigated by including two different types of phase change material (PCM), nano-encapsulated and non-encapsulated in certain proportions (0%, 2,5%, 5%) in cement based mortar. While the slump-spanning and viscosities of the mortars with PCM additives were determined in the fresh state, changes in ultrasound transmission velocity, electrical resistivity, compressive and flexural strength were investigated in hardened mortars. According to the findings, physical and mechanical properties were decreased with the use of phase change material in mortars, and this decrease was higher in mortars using encapsulated PCM.

Kaynakça

  • Agyenim F., Hewitt N., Eames P., Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 2010; 14(2): 615-628.
  • Albdour SA., Haddad Z., Sharaf OZ., Alazzam A., Abu-Nada E. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage, Fundamentals, recent advances, and future directions. Progress in Energy and Combustion Science 2022; 93: 101037.
  • Alsaadawi MM., Amin M., Tahwia AM. Thermal, mechanical and microstructural properties of sustainable concrete incorporating Phase change materials. Construction and Building Materials 2022; 356: 129300.
  • Anisur MR., Mahfuz MH., Kibria MA., Saidur R., Metselaar IHSC., Mahlia TMI. Curbing global warming with phase change materials for energy storage. Renewable and Sustainable Energy Reviews 2013; 18: 23-30.
  • ASTM C1760. Standard test method for bulk electrical conductivity of hardened concrete, ASTM International, West Conshohocken, PA, 2012.
  • Baccega E., Bottarelli M., Cesari S. Addition of granular phase change materials (PCMs) and graphene to a cement-based mortar to improve its thermal performances. Applied Thermal Engineering 2023; 229: 120582.
  • Baetens R., Jelle BP., Gustavsen A. Phase change materials for building applications, A state-of-the-art review. Energy and Buildings 2010; 42: 1361-1368.
  • Barreneche C. Evaluation in the macroscale. Applied Energy 2013; 109: 428-432.
  • Biwan X., Hongyan M., Zeyu L., Zongjin L. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Applied Energy 2015; 160: 358-367.
  • Boh B., Sumiga B. Microencapsulation technology and its applications in building construction materials. Materials and Geoenvironment 2008; 55: 329-344.
  • Bondareva NS., Sheremet MA. Heat transfer performance in a concrete block containing a phase change material for thermal comfort in buildings. Energy and Buildings 2022; 256: 111715.
  • Cabeza LF., Castell A., Barreneche C., Gracia D., Fernández I. Materials used as PCM in thermal energy storage in buildings, a review. Renewable and Sustainable Energy Reviews 2011; 15: 1675-1695.
  • Cabeza LF., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Building 2007; 39: 113-119.
  • Cheng J., Kang M., Lin W., Liang C., Liu Y., Wang Y., Niu S., Zhang F. Preparation and characterization of phase change material microcapsules with modified halloysite nanotube for controlling temperature in the building. Construction and Building Materials 2023; 362: 129764.
  • Cui Y., Xie J., Liu J. Review of phase change materials integrated in building walls for energy saving. Procedia Engineering 2015; 121: 763-770.
  • Cui Y., Xie J., Liu J., Wang J., Chen S. A review on phase change material application in building. Advances in Mechanical Engineering 2017; 9(6): 1687814017700828.
  • Das R., Gandhi ISR., Muthukumar P. Use of agglomerated Micro-encapsulated phase change material in cement mortar as thermal energy storage material for building. Materials Today: Proceedings 2022; 65(2): 808-814.
  • Djamai ZI., Salvatore F., Si Larbi A., Cai G., El Mankibi M. Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars. Cem. Concr. Res. 2019; 119: 51-63.
  • Dora S., Mini KM. Performance assessment of capric acid-ethyl alcohol/expanded vermiculite phase change material incorporated cement mortar for thermal insulation in buildings. Journal of Energy Storage 2023; 72(C): 108550.
  • Drissi S., Mo KH., Falchetto AC., Ling TC. Understanding the compressive strength degradation mechanism of cement-paste incorporating phase change material. Cem. Concr. Compos. 2021; 124: 104249.
  • Dutil Y., Rousse D., Lassue S. Modeling phase change materials behavior in building applications, comments on material characterization and model validation. Renewable and Sustainable Energy Reviews 2014; 61: 132-135.
  • Evola G., Marletta L., Sicurella F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment 2013; 59: 517-527.
  • Fenollera M., Míguez J., Goicoechea I., Lorenzo J., Ángel Álvarez M. The influence of phase change materials on the properties of self-compacting concrete. Materials 2013; 6: 3530-3546.
  • Frahat NB., Amin M., Heniegal AM., Omar IOM. Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings. Construction and Building Materials 2023; 391: 131844.
  • Gbekou FK., Benzarti K., Boudenne A., Eddhahak A., Duc M. Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. Construction and Building Materials 2022; 352: 129056.
  • Goia F., Bianco L., Cascone Y. Experimental analysis of an advanced dynamic glazing prototype integrating PCM and thermotropic layers. Energy Proced 2014; 48: 1272-1281.
  • Guardia C., Barluenga G., Palomar I. Evaluation of the energy storage capacity of phase change material cement-lime mortars by using heat flux meters and ultrasonic pulse transmission. Journal of Energy Storage 2022; 50: 104674.
  • Hao L., Xiao J., Sun J., Xia B., Cao W. Thermal conductivity of 3D printed concrete with recycled fine aggregate composite phase change materials. Journal of Cleaner Production 2022; 364: 132598.
  • Hattan HA., Madhkhan M., Marani A. Thermal and mechanical properties of building external walls plastered with cement mortar incorporating shape-stabilized phase change materials (SSPCMs). Construction and Building Materials 2021; 270: 121385.
  • Hornbostel K., Larsen CK., Geiker MR. Relationship between concrete resistivity and corrosion rate-A literature review. Cement and Concrete Composites 2013; 39: 60-72.
  • Hunger M., Entrop AG., Mandilaras I., Brouwers HJH., Founti M. The behaviour of self-compacting concrete microencapsulated phase change materials. Cement & Concrete Composites 2009; 31: 731-743.
  • Illampas R., Rigopoulos I., Ioannou I. Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar. Journal of Building Engineering 2021; 40: 102328.
  • Jacob R., Bruno F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews 2015; 48: 79–87.
  • Kong X., Lu S., Li Y. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application. Energy Buildings 2014; 81: 404-415.
  • Kumar GN., Ram VV., Parameshwaran R. Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application. Construction and Building Materials 2023; 385: 13148.
  • Kumar R., Misra M., Kumar R., Gupta D., Khatri P., Tak B. Phase change materials, technology status and potential defence applications. Defence Science Journal 2011; 61: 576-582.
  • Kylili A., Fokaides PA. Life cycle assessment (LCA) of phase change materials (PCMs) for building applications. A review. Journal of Building Engineering 2016; 6: 133-143.
  • Lee T., Hawes DW., Banu D., Feldman D. Control aspects of latent heat storage and recovery in concrete. Solar Energy Materials and Solar Cells 2000; 62(3): 217-237.
  • Lin Y., Jia Y., Alva G., Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews 2018; 82: 2730-2742.
  • Ma Y., Sun S., Li J., Tang G. Preparation and thermal reliabilities of microencapsulated phase change materials with binary cores and acrylate-based polymer shells. Thermochim Acta 2014; 588: 38-46.
  • Mandilaras I., Stamatiadou M., Katsourinis D., Zannis G., Founti M. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment 2013; 61: 93-103.
  • Marani A., Zhang L., Nehdi ML. Design of concrete incorporating microencapsulated phase change materials for clean energy, A ternary machine learning approach based on generative adversarial network. Engineering Applications of Artificial Intelligence 2023; 118: 105652.
  • Marani A., Zhang L., Nehdi ML. Design of concrete incorporating microencapsulated phase change materials for clean energy, A ternary machine learning approach based on generative adversarial networks”. Engineering Applications of Artificial Intelligence 2023; 118: 105652.
  • Mira-Hernández C., Travaglini G., Dolfi A., Mancin S. Electrical properties of phase change materials for electrical impedance-based sensing of the liquid fraction. Journal of Energy Storage 2025; 113: 115625.
  • Moustapha BE., Bonnet S., Khelidj A., Maranzana N., Froelich D., Khalifa A., Babah IA. Effects of microencapsulated phase change materials on chloride ion transport properties of geopolymers incorporating slag and, metakaolin, and cement-based mortars. Journal of Building Engineering 2023; 74: 106887.
  • Muraleedharan M., Nadir Y. Geopolymer mortar integrated with phase change materials for improvement of thermal efficiency in buildings: A review. Materials Today: Proceedings 2021; 44(1): 878-885.
  • Peng L., Wu H., Mao Q. Numerical and experimental study on the performance of a thermal energy storage in a solar building. Journal of Energy Storage 2023; 61: 106745.
  • Pilehvar S., Szczotok AM., Carmona M., Pamies R., Kjøniksen AL. The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars. J Am Ceram Soc. 2020, 103: 5852-5869.
  • Pires L., Silva PD., Castro Gomes JP. Experimental study of an innovative element for passive cooling of buildings. Sustain. Energy Technol. Assess. 2013; 4: 29-35.
  • Qiu X., Lu L., Wang J., Tang G., Song G. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shell. Solar Energy Materials and Solar Cells 2014; 128: 102-111.
  • Raj VAA., Velraj R. Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews 2010; 14: 2819-2829.
  • Ramakrishnan S., Sanjayan J., Wang X., Alam M., Wilson J. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Applied Energy 2015; 157: 85-94.
  • Rao Y., Lin G., Luo Y., Chen S., Wang L. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer. Heat Transfer-Asian Research 2007; 36: 28-37.
  • Rebelo F., Figueiredo A., Vicente R., Ferreira VM. Study of a thermally enhanced mortar incorporating phase change materials for overheating reduction in buildings. Journal of Energy Storage 2022; 46: 103876.
  • Sarcinella A., Barroso de Aguiar JL., Jesus C., Frigione M. Thermal properties of PEG-based form-stable phase change materials (PCMs) incorporated in mortars for energy efficiency of buildings. Journal of Energy Storage 2023; 67: 107545.
  • Schossig P., Henning HM., Gschwander S., Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells 2005; 89(2-3): 297–306.
  • Shahzad Q., Shen J., Naseem R., Yao Y., Waqar S., Liu W. Influence of phase change material on concrete behavior for construction 3D printing. Construction and Building Materials 2021; 309: 125121.
  • Soares N., Costa JJ., Gaspar AR., Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings `energy efficiency. Energy and Buildings 2013; 59: 82-103.
  • Tan FL., Hosseinizadeh SF., Khodadadi JM., Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer 2009; 52: 3464-3472.
  • Tseng YH., Fang MH., Tsai PS., Yang YM. Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. Journal of Microencapsulation 2005; 22: 37-46.
  • TS EN 12350-6, 2010, Beton – Taze beton deneyleri-Bölüm 6: Yoğunluk. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3, 2010, Beton-Sertleşmiş beton deneyleri-Bölüm 3: deney numunelerinde basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-5, 2010, Beton-Sertleşmiş beton deneyleri-Bölüm 5: deney numunelerinin eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Tyagi VV., Pandey AK., Buddhi D. Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings. Energy and Buildings 2016; 117: 44-52.
  • Vicente R., Silva T. Brick masonry walls with PCM macrocapsules, an experimental approach. Applied Thermal Engineering 2014; 67: 24-34.
  • Wang H., Wang JP., Wang X., Li W., Zhang X., Preparation and properties of microencapsulated phase change materials containing two-phase core materials. Industrial & Engineering Chemistry Research 2013; 52: 14706-14712.
  • Waqas A., Ud Din Z. Phase change material (PCM) storage for free cooling of buildings-a review. Renewable and Sustainable Energy Reviews 2013; 18: 607-625.
  • Weinlader H., Beck A., Fricke J. PCM-facade-panel for daylighting and room heating. Solar Energy 2005; 78: 177-186.
  • Yahay NA., Ahmad H. Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings. Procedia Engineering 2011; 20: 238-244.
  • Yan B., Lu H., Li M., Wang X., Wang Z., Pi M., Cui W., Ran R. Preparation of phase change microcapsules with high thermal storage and temperature sensitive for thermal management. Journal of Energy Storage 2023; 64: 107003.
  • You M., Wang X., Zhang X., Zhang L., Wang J. Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. Journal of Polymer Research 2011; 18: 49-58.
  • Yu B., Li S., Zhu H., Jiang Q., Wang D., Chen Y. A composite phase change material for improving the freeze–thaw resistance performance of cement mortars. Construction and Building Materials 2023; 387: 131657.
  • Yu K., Liu Y., Jia M., Wang C., Yang Y. Thermal energy storage cement mortar containing encapsulated hydrated salt/fly ash cenosphere phase change material. Thermo-mechanical properties and energy saving analysis. Journal of Energy Storage 2022, 51: 104388.
  • Yu XK., Tao YB. Improvement of thermal cycle stability of paraffin/expanded graphite composite phase change materials and its application in thermal management. Journal of Energy Storage 2023; 63: 107019.
  • Yuan Y., Zhang N. Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage. Materials Letters 2014; 125: 154-157.
  • Zastawna-Ruminand A., Nowak K. Experimental thermal performance analysis of building components containing phase change material (PCM). Procedia Engineering 2015; 108: 428-435.
  • Zebari Z., Bedirhanoğlu İ., Aydın M. Beton basınç dayanımının ultrasonik ses dalgası yayılma hızı ile tahmin edilmesi. Dicle Üniversitesi Mühendislik Fakültesi 2017; 8: 1.
  • Zhang GH., Bon SAF., Zhao CY. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Solar Energy 2012; 86: 1149-1154.
  • Zhang P., Ma ZW., Wang RZ. An overview of phase change material slurries. MPCS and CHS, Renewable and Sustainable Energy Reviews 2010; 14: 598-614.
  • Zhang XX., Tao XM., Yick KL., Wang XC. Structure and thermal stability of microencapsulated phase-change materials. Colloid & Polymer Science 2004; 282: 330-336.
  • Zhao CY., Zhang GH. Review on microencapsulated phase change materials (MEPCMs), Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews 2011; 15(8): 3813-3832.
  • Zhu L., Dang F., Ding W., Sang G., Wang Q., Jiao K. Thermo-physical properties of light-weight aggregate concrete integrated with micro-encapsulation phase change materials, Experimental investigation and theoretical model. Journal of Building Engineering 2023; 69: 106309.
  • Zhu N., Ma Z., Wang S. Dynamic characteristics and energy performance of buildings using phase change materials, a review. Energy Conversion and Management 2009; 50: 3169-3181.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Uygunoğlu

Sevcan Barlas Özgüven

Gönderilme Tarihi 17 Ocak 2025
Kabul Tarihi 11 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Uygunoğlu, T., & Barlas Özgüven, S. (2025). Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2057-2078. https://doi.org/10.47495/okufbed.1622050
AMA Uygunoğlu T, Barlas Özgüven S. Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2025;8(5):2057-2078. doi:10.47495/okufbed.1622050
Chicago Uygunoğlu, Tayfun, ve Sevcan Barlas Özgüven. “Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 5 (Aralık 2025): 2057-78. https://doi.org/10.47495/okufbed.1622050.
EndNote Uygunoğlu T, Barlas Özgüven S (01 Aralık 2025) Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2057–2078.
IEEE T. Uygunoğlu ve S. Barlas Özgüven, “Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, ss. 2057–2078, 2025, doi: 10.47495/okufbed.1622050.
ISNAD Uygunoğlu, Tayfun - Barlas Özgüven, Sevcan. “Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (Aralık2025), 2057-2078. https://doi.org/10.47495/okufbed.1622050.
JAMA Uygunoğlu T, Barlas Özgüven S. Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2057–2078.
MLA Uygunoğlu, Tayfun ve Sevcan Barlas Özgüven. “Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, 2025, ss. 2057-78, doi:10.47495/okufbed.1622050.
Vancouver Uygunoğlu T, Barlas Özgüven S. Çimento Esaslı Harçlarda Faz Değiştiren Malzeme Tipinin Harcın Reolojik, Fiziksel ve Mekanik Özeliklerine Etkisinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2057-78.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.