Araştırma Makalesi
BibTex RIS Kaynak Göster

Control of Meloidogyne incognita and Fusarium oxysporum f.sp. radicis lycopersici Disease Complex in Tomato Using Abamectin, Bacillus thuringiensis and Bacillus subtilis

Yıl 2025, Cilt: 8 Sayı: 5, 2151 - 2164, 15.12.2025
https://doi.org/10.47495/okufbed.1632885

Öz

In this controlled study, commercial abamectin (Abamax 50 SC®), Bacillus thuringiensis var. kurstaki strain ABTS-351 (Dipel® 54% DF) and Bacillus subtilis strain IAB/BS03 (Fungıseı® SL) pesticides were used alone or in combination to control Meloidogyne incognita and Fusarium oxysporum f. sp. radicis lycopersici (FORL) disease complex in tomato. The study consisted of single and three combination treatments to simultaneous nematode and fungus inoculation. One day after nematode and fungus inoculation, pesticides were applied to the soil. Sixty days later, the experiment was terminated and evaluated using a scale of 1-9 root galling and egg masses index and 0-4 disease severity. When the single treatments were evaluated, the highest suppressive effect was found in Abamectin treatment in nematode parameters, while the highest suppressive effect was found in B. subtilis IAB/BS03 strain treatment in disease severity. In the combinations of B. thuringiensis var. kurstaki ABTS-351 strain and B. subtilis IAB/BS03 strain with abamectin, the gal index value was found to be 1.4 and 1.8, respectively, while the disease severity scale average was found to be 1.8 and 1.4, respectively, which were the lowest values in the experiment. The suppressive effect on nematodes and fungi increased in combination applications with abamectin and biological control agents, bacteria. It is thought that combination applications with Abamectin will be more successful in Meloidogyne incognita and FORL disease complex.

Kaynakça

  • Ahmed S., Liu Q., Jian H. Biocontrol potential of Bacillus isolates against cereal cyst nematode (Heterodera avenae). Pakistan Journal of Nematology 2018; 36(2): 163-176.
  • Arici SE., Tuncel ZN. Antifungal activity of useful microorganisms against a phytopathogenic fungus on maize. Emerging Materials Research 2020; 9(3): 743-749.
  • Asaturova AM., Bugaeva LN., Homyak AI., Slobodyanyuk GA., Kashutina EV., Yasyuk LV., Sidorov NM., Nadykta VD., Garkovenko AV. Bacillus velezensis strains for protecting cucumber plants from root-knot nematode Meloidogyne incognita in a greenhouse. Plants 2022; 11(3): 275.
  • Ashoub AH., Amara MT. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science 2010; 6(10): 321-328.
  • Baard V., Bakare OO., Daniel AI., Nkomo M., Gokul A., Keyster M., Klein A. Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens 2023; 12(2): 254.
  • Baysal Ö., Çalışkan M., Yeşilova Ö. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology 2008; 73(1-3): 25-32.
  • Bilici S., Demir S., Boyno G. The effects of essential oils and Arbuscular Mycorrhizal fungi on decay disease (Fusarium oxysporum f. sp. radicis lycopersici Jarvis & Shoemaker) of root and root collar of tomato. Journal of The Institute of Science and Technology 2021; 11(2): 857-868.
  • Can C., Yucel S., Korolev N., Katan T. First report of Fusarium crown and root rot of tomato caused by Fusarium oxysporum f.sp. radicis-lycopersici in Turkey. Plant Pathology 2004; 53(6): 814.
  • Cazorla FM., Romero D., Pérez‐García A., Lugtenberg BJJ., Vicente AD., Bloemberg G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology 2007; 103(5): 1950-1959.
  • Cao Y., Xu Z., Ling N., Yuan Y., Yang X., Chen L., Shen Q. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae 2012; 135: 32-39.
  • Cavaglieri L., Orlando JRMI., Rodriguez MI., Chulze S., Etcheverry M. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 2005; 156(5-6): 748-754.
  • Chandler JM., Santelmann PW. Interactions of four herbicides with Rhizoctonia solani on seedling cotton. Weed Science 1968; 16(4): 453-456.
  • Constantinescu F., Sicuia OA., Zamfiropol R., Dinu S., Oancea F. Beneficial characteristics of some bacterial strains isolated from rhizosphere. Romanian Journal of Plant Protection 2010; 3: 6-11.
  • Crump A., Omura S. Ivermectin,‘wonder drug’from Japan: the human use perspective. Proceedings of the Japan Academy 2011; 87(2): 13-28.
  • Çolak A., Biçici M. PCR detection of Fusarium oxysporum f. sp. radicis-lycopersici and races of F. oxysporum f. sp. lycopersici of tomato in protected tomato-growing areas of The Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry 2013; 37(4): 457-467.
  • Dawar S., Tariq M., Zaki MJ. Application of Bacillus species in control of Meloidogyne javanica (treub) Chitwood on cowpea and mash bean. Pakistan Journal of Botany 2008; 40(1): 439-444.
  • Dionisio AC., Rath S. Abamectin in soils: analytical methods, kinetics, sorption and dissipation. Chemosphere 2016; 151: 17-29.
  • El-Nagdi WMA., Haggag KHE., Abd-El-Fattah AI., Abd-El-Khair H. Biological control of Meloidogyne incognita and Fusarium solani in sugar beet. Nematologia Mediterranea 2011; 39(1): 59-71.
  • Erol FY., Tunalı B. Determination of root and crown rot diseases in tomato growing area of Samsun Province. I. International Symposium on Tomato Diseases, 2007 October, 65-70, Kuşadası, Turkey, 808 pp.
  • Feitelson JS., Payne J., Kim L. Bacillus thuringiensis: insects and beyond. Biotechnology 1992; 10(3): 271-275.
  • Göze Özdemir FG., Arıcı ŞE., Elekcioğlu İH. Interaction of Meloidogyne incognita (Kofoid & White, 1919) (Nemata: Meloidogynidae) and Fusarium oxysporum f. sp. radicis-lycopersici Jarvis & Shoemaker in tomato f1 hybrids with differing levels of resistance to these pathogens. Turkish Journal of Entomology 2022a; 46(1): 63-73.
  • Göze Özdemir FG., Tosun B., Şanlı A., Karadoğan T. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi 2022b; 59(3): 529-539.
  • Haydock PPJ., Woods SR., Grove IG., Hare MC. Chemical control of nematodes. In: Plant Nematology, 2nd Edition. Perry R.N., Moens M. (Eds.). Cab International, Wallingford 2013; 459-479.
  • Hibar K., Edel-Herman V., Steinberg C., Gautheron N., Daami-Remadi M., Alabouvette C., El Mahjoub M. Genetic diversity of Fusarium oxysporum populations isolated from tomato plants in Tunisia. Journal of Phytopathology 2007; 155(3): 136-142.
  • Huang Y., Xu C., Ma L., Zhang K., Duan C., Mo M. Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology 2010; 126: 417-422.
  • Iatsenko I., Boichenko I., Sommer, RJ. Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Applied and Environmental Microbiology 2014; 80(10): 3266-3275.
  • Jiang J., Liu X., Liu D., Zhou Z., Pan C., Wang P. The combination of chemical fertilizer affected the control efficacy against root-knot nematode and environmental behavior of abamectin in soil. Pesticide Biochemistry and Physiology 2024; 199: 105804.
  • Jiménez-Díaz RM., Castillo P., Del Mar Jiménez-Gasco M., Landa BB., Navas-Cortés JA. Fusarium wilt of chickpeas: biology, ecology and management. Crop Protection 2015; 73: 16-27.
  • Jones JT., Haegeman A., Danchin EGJ., Gaur HS., Helder J., Jones MGK., Kikuchi T., Manzanilla-López R., Palomares-Rius JE., Wesemael WML., Perry RN. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 2013; 14(9): 946-961.
  • Karanja NK., Mutua GK., Kimenju JW. Evaluating the effect of Bacillus and Rhizobium bio-inoculant on nodulation and nematode control in Phaseolus vulgaris L. In: Advances in Integrated Soil Fertility Research in SubSaharan Africa: Challenges and Opportunities, (Bationo, A., Waswa B., Kihara J. and Kimetu J. eds.) Netherlands, 2007, Springer, 865-871.
  • Khalil MS., Abd El-Naby SSI. The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid and White) Chitwood on tomatoes. Journal of Biopesticides 2018; 11(2): 146-153.
  • Khalil MSEDH., Allam AFG., Barakat AST. Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research 2012; 52(1).
  • Khedher SB., Mejdoub-Trabelsi B., Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control 2021; 152: 104444.
  • Kirk WW., Wharton, PS. Fungal and bacterial disease aspects in potato production. In The potato: botany, production and uses 2014; pp. 167-201. Wallingford UK: CABI.
  • Kotze AC., O’Grady J., Gough JM., Pearson R., Bagnall NH., Kemp DH., Akhurst RJ. Toxicity of Bacillus thuringiensis to parasitic and free-living life stages of nematodes parasites of livestock. International Journal for Parasitology 2005; 35(9): 1013-1022.
  • Lastochkina O., Baymiev A., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I., Palamutoglu R. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants 2020; 9(1): 76.
  • Lobna H., Mayssa C., Hajer R., Naima MHB., Ali R., Najet HR. Biocontrol effectiveness of indigenous Trichoderma species against Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici on tomato. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 2016; 10(10): 551-555.
  • Lobna H., Aymen EM., Hajer R., Naima MHB., Najet HR. Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica. European Journal of Plant Pathology 2017; 148(2): 463-472.
  • Mohamedova M., Samaliev H. Effect of the rhizobacterium Bacillus subtilis on the development of the root-knot nematode Meloidogyne arenaria at different temperatures. Agricultural Science and Technology 2011; 3(4): 378-383.
  • Mullin BA., Abawi GS., Pastor-Corrales MA., Kornegay JL. Reactions of selected bean pure lines and accessions to Meloidogyne species. Plant Disease 1991; 75(12): 1212-1216.
  • Muzhandu RT., Chinheya CC., Dimbi S., Manjeru P. Efficacy of abamectin for the control of root-knot nematodes in tobacco seedling production in Zimbabwe. African Journal of Agricultural Research 2014; 9(1): 144-147.
  • Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health 2016; 4: 148.
  • Novelli A., Vieira BH., Braun AS., Mendes LB., Daam MA., Espíndola ELG. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere 2016; 144: 1408-1414.
  • Ongena M., Duby F., Jourdan E., Beaudry T., Jadin V., Dommes J., Thonart P. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology 2005; 67: 692-698.
  • Patil JA., Yadav S., Kumar A. Management of root knot nematode, Meloidogyne incognita and soil borne fungus, Fusarium oxysporum in cucumber using three bioagents under polyhouse conditions. Saudi Journal of Biological Sciences 2021; 28(12): 7006-7011.
  • Radwan MA. Bioactivity of commercial products of Bacillus thuringiensis on Meloidogyne incognita infecting tomato. Indian Journal of Nematology 2007; 37(1): 30-33.
  • Saad ASA., Radwan MA., Mesbah HA., Ibrahim HS., Khalil MS. Evaluation of some Non-fumigant nematicides and the biocide avermactin for managing Meloidogyne incognita in tomatoes. Pakistan Journal of Nematology 2017; 35(1): 85-92.
  • Sharma IP., Sharma AK. Effects of initial inoculum levels of Meloidogyne incognita J2 on development and growth of tomato conditions. cv.PT-3 under control. African Journal of Microbiology Research 2015; 9(20): 1376-1380.
  • Shi X., Qiao K., Li B., Zhang S. Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil. Crop Protection 2019; 126: 104922.
  • Singh G., Tiwari A., Choudhir G., Kumar A., Kumar S., Hariprasad P., Sharma S. Deciphering the role of Trichoderma sp. bioactives in combating the wilt causing cell wall degrading enzyme polygalacturonase produced by Fusarium oxysporum: an in-silico approach. Microbial Pathogenesis 2022; 168: 105610.
  • Zhao Y., Selvaraj JN., Xing F., Zhou L., Wang Y., Song H., Liu Y. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PloS one 2014; 9(3): e92486.
  • Wram CL., Zasada IA. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 2019; 109(9): 1605-1613.

Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi

Yıl 2025, Cilt: 8 Sayı: 5, 2151 - 2164, 15.12.2025
https://doi.org/10.47495/okufbed.1632885

Öz

Kontrollü koşullarda yürütülen bu çalışmada domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici (FORL) hastalık kompleksinin mücadelesinde ticari abamektin (Abamax 50 SC®), Bacillus thuringiensis var. kurstaki ABTS-351 ırkı (Dipel® 54% DF) ve Bacillus subtilis IAB/BS03 ırkı (Fungıseı® SL) pestisitlerinin tek başlarına veya kombinasyon halinde etkisini değerlendirmek amacıyla saksılarda yürütülmüştür. Çalışma eş zamanlı nematod ve fungus inokülasyonuna yapılan tekli ve üç adet kombinasyon uygulamaları ile oluşturulmuştur. Nematod ve fungus inokulasyonundan bir gün sonra pestisitler toprağa uygulanmıştır. Altmış gün sonra deneme sonlandırılarak 1-9 kök gallenme ve yumurta paketi indeksi ile 0-4 hastalık şiddeti skalası kullanılarak değerlendirilmiştir. Tek başına yapılan uygulamalar değerlendirildiğinde en yüksek baskılayıcı etkinin nematod parametrelerinde Abamektin uygulamasında olduğu belirlenirken, hastalık şiddetinde ise B. subtilis IAB/BS03 ırkı uygulamasında saptanmıştır. Abamektin ile yapılan B. thuringiensis var. kurstaki ABTS-351 ırkı ve B. subtilis IAB/BS03 ırkı kombinasyonlarında gal indeks değeri sırasıyla 1.4 ve 1.8 bulunurken, hastalık şiddeti skala ortalaması sırasıyla 1.8 ve 1.4 tespit edilerek denemede en düşük değerler olduğu saptanmıştır. Abamektin ve biyolojik kontrol etmenleri olan bakteriler ile yapılan kombinasyon uygulamalarda nematod ve fungus üzerindeki baskılayıcı etki artmıştır. Meloidogyne incognita ve FORL hastalık kompleksinde Abamektin ile yapılan kombinasyon uygulamaların daha başarılı olacağı düşünülmektedir.

Etik Beyan

Yazarlar makaleye eşit oranda katkı sağlamış olduklarını beyan ederler.

Teşekkür

Materyal temini sağlayan Ziraat Yüksek Mühendisi Harun Burak GÖZE’ye (Beylerbeyi Tarım, Altınova, Antalya, Türkiye) desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • Ahmed S., Liu Q., Jian H. Biocontrol potential of Bacillus isolates against cereal cyst nematode (Heterodera avenae). Pakistan Journal of Nematology 2018; 36(2): 163-176.
  • Arici SE., Tuncel ZN. Antifungal activity of useful microorganisms against a phytopathogenic fungus on maize. Emerging Materials Research 2020; 9(3): 743-749.
  • Asaturova AM., Bugaeva LN., Homyak AI., Slobodyanyuk GA., Kashutina EV., Yasyuk LV., Sidorov NM., Nadykta VD., Garkovenko AV. Bacillus velezensis strains for protecting cucumber plants from root-knot nematode Meloidogyne incognita in a greenhouse. Plants 2022; 11(3): 275.
  • Ashoub AH., Amara MT. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science 2010; 6(10): 321-328.
  • Baard V., Bakare OO., Daniel AI., Nkomo M., Gokul A., Keyster M., Klein A. Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens 2023; 12(2): 254.
  • Baysal Ö., Çalışkan M., Yeşilova Ö. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology 2008; 73(1-3): 25-32.
  • Bilici S., Demir S., Boyno G. The effects of essential oils and Arbuscular Mycorrhizal fungi on decay disease (Fusarium oxysporum f. sp. radicis lycopersici Jarvis & Shoemaker) of root and root collar of tomato. Journal of The Institute of Science and Technology 2021; 11(2): 857-868.
  • Can C., Yucel S., Korolev N., Katan T. First report of Fusarium crown and root rot of tomato caused by Fusarium oxysporum f.sp. radicis-lycopersici in Turkey. Plant Pathology 2004; 53(6): 814.
  • Cazorla FM., Romero D., Pérez‐García A., Lugtenberg BJJ., Vicente AD., Bloemberg G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology 2007; 103(5): 1950-1959.
  • Cao Y., Xu Z., Ling N., Yuan Y., Yang X., Chen L., Shen Q. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae 2012; 135: 32-39.
  • Cavaglieri L., Orlando JRMI., Rodriguez MI., Chulze S., Etcheverry M. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 2005; 156(5-6): 748-754.
  • Chandler JM., Santelmann PW. Interactions of four herbicides with Rhizoctonia solani on seedling cotton. Weed Science 1968; 16(4): 453-456.
  • Constantinescu F., Sicuia OA., Zamfiropol R., Dinu S., Oancea F. Beneficial characteristics of some bacterial strains isolated from rhizosphere. Romanian Journal of Plant Protection 2010; 3: 6-11.
  • Crump A., Omura S. Ivermectin,‘wonder drug’from Japan: the human use perspective. Proceedings of the Japan Academy 2011; 87(2): 13-28.
  • Çolak A., Biçici M. PCR detection of Fusarium oxysporum f. sp. radicis-lycopersici and races of F. oxysporum f. sp. lycopersici of tomato in protected tomato-growing areas of The Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry 2013; 37(4): 457-467.
  • Dawar S., Tariq M., Zaki MJ. Application of Bacillus species in control of Meloidogyne javanica (treub) Chitwood on cowpea and mash bean. Pakistan Journal of Botany 2008; 40(1): 439-444.
  • Dionisio AC., Rath S. Abamectin in soils: analytical methods, kinetics, sorption and dissipation. Chemosphere 2016; 151: 17-29.
  • El-Nagdi WMA., Haggag KHE., Abd-El-Fattah AI., Abd-El-Khair H. Biological control of Meloidogyne incognita and Fusarium solani in sugar beet. Nematologia Mediterranea 2011; 39(1): 59-71.
  • Erol FY., Tunalı B. Determination of root and crown rot diseases in tomato growing area of Samsun Province. I. International Symposium on Tomato Diseases, 2007 October, 65-70, Kuşadası, Turkey, 808 pp.
  • Feitelson JS., Payne J., Kim L. Bacillus thuringiensis: insects and beyond. Biotechnology 1992; 10(3): 271-275.
  • Göze Özdemir FG., Arıcı ŞE., Elekcioğlu İH. Interaction of Meloidogyne incognita (Kofoid & White, 1919) (Nemata: Meloidogynidae) and Fusarium oxysporum f. sp. radicis-lycopersici Jarvis & Shoemaker in tomato f1 hybrids with differing levels of resistance to these pathogens. Turkish Journal of Entomology 2022a; 46(1): 63-73.
  • Göze Özdemir FG., Tosun B., Şanlı A., Karadoğan T. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi 2022b; 59(3): 529-539.
  • Haydock PPJ., Woods SR., Grove IG., Hare MC. Chemical control of nematodes. In: Plant Nematology, 2nd Edition. Perry R.N., Moens M. (Eds.). Cab International, Wallingford 2013; 459-479.
  • Hibar K., Edel-Herman V., Steinberg C., Gautheron N., Daami-Remadi M., Alabouvette C., El Mahjoub M. Genetic diversity of Fusarium oxysporum populations isolated from tomato plants in Tunisia. Journal of Phytopathology 2007; 155(3): 136-142.
  • Huang Y., Xu C., Ma L., Zhang K., Duan C., Mo M. Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology 2010; 126: 417-422.
  • Iatsenko I., Boichenko I., Sommer, RJ. Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Applied and Environmental Microbiology 2014; 80(10): 3266-3275.
  • Jiang J., Liu X., Liu D., Zhou Z., Pan C., Wang P. The combination of chemical fertilizer affected the control efficacy against root-knot nematode and environmental behavior of abamectin in soil. Pesticide Biochemistry and Physiology 2024; 199: 105804.
  • Jiménez-Díaz RM., Castillo P., Del Mar Jiménez-Gasco M., Landa BB., Navas-Cortés JA. Fusarium wilt of chickpeas: biology, ecology and management. Crop Protection 2015; 73: 16-27.
  • Jones JT., Haegeman A., Danchin EGJ., Gaur HS., Helder J., Jones MGK., Kikuchi T., Manzanilla-López R., Palomares-Rius JE., Wesemael WML., Perry RN. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 2013; 14(9): 946-961.
  • Karanja NK., Mutua GK., Kimenju JW. Evaluating the effect of Bacillus and Rhizobium bio-inoculant on nodulation and nematode control in Phaseolus vulgaris L. In: Advances in Integrated Soil Fertility Research in SubSaharan Africa: Challenges and Opportunities, (Bationo, A., Waswa B., Kihara J. and Kimetu J. eds.) Netherlands, 2007, Springer, 865-871.
  • Khalil MS., Abd El-Naby SSI. The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid and White) Chitwood on tomatoes. Journal of Biopesticides 2018; 11(2): 146-153.
  • Khalil MSEDH., Allam AFG., Barakat AST. Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research 2012; 52(1).
  • Khedher SB., Mejdoub-Trabelsi B., Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control 2021; 152: 104444.
  • Kirk WW., Wharton, PS. Fungal and bacterial disease aspects in potato production. In The potato: botany, production and uses 2014; pp. 167-201. Wallingford UK: CABI.
  • Kotze AC., O’Grady J., Gough JM., Pearson R., Bagnall NH., Kemp DH., Akhurst RJ. Toxicity of Bacillus thuringiensis to parasitic and free-living life stages of nematodes parasites of livestock. International Journal for Parasitology 2005; 35(9): 1013-1022.
  • Lastochkina O., Baymiev A., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I., Palamutoglu R. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants 2020; 9(1): 76.
  • Lobna H., Mayssa C., Hajer R., Naima MHB., Ali R., Najet HR. Biocontrol effectiveness of indigenous Trichoderma species against Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici on tomato. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 2016; 10(10): 551-555.
  • Lobna H., Aymen EM., Hajer R., Naima MHB., Najet HR. Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica. European Journal of Plant Pathology 2017; 148(2): 463-472.
  • Mohamedova M., Samaliev H. Effect of the rhizobacterium Bacillus subtilis on the development of the root-knot nematode Meloidogyne arenaria at different temperatures. Agricultural Science and Technology 2011; 3(4): 378-383.
  • Mullin BA., Abawi GS., Pastor-Corrales MA., Kornegay JL. Reactions of selected bean pure lines and accessions to Meloidogyne species. Plant Disease 1991; 75(12): 1212-1216.
  • Muzhandu RT., Chinheya CC., Dimbi S., Manjeru P. Efficacy of abamectin for the control of root-knot nematodes in tobacco seedling production in Zimbabwe. African Journal of Agricultural Research 2014; 9(1): 144-147.
  • Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health 2016; 4: 148.
  • Novelli A., Vieira BH., Braun AS., Mendes LB., Daam MA., Espíndola ELG. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere 2016; 144: 1408-1414.
  • Ongena M., Duby F., Jourdan E., Beaudry T., Jadin V., Dommes J., Thonart P. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology 2005; 67: 692-698.
  • Patil JA., Yadav S., Kumar A. Management of root knot nematode, Meloidogyne incognita and soil borne fungus, Fusarium oxysporum in cucumber using three bioagents under polyhouse conditions. Saudi Journal of Biological Sciences 2021; 28(12): 7006-7011.
  • Radwan MA. Bioactivity of commercial products of Bacillus thuringiensis on Meloidogyne incognita infecting tomato. Indian Journal of Nematology 2007; 37(1): 30-33.
  • Saad ASA., Radwan MA., Mesbah HA., Ibrahim HS., Khalil MS. Evaluation of some Non-fumigant nematicides and the biocide avermactin for managing Meloidogyne incognita in tomatoes. Pakistan Journal of Nematology 2017; 35(1): 85-92.
  • Sharma IP., Sharma AK. Effects of initial inoculum levels of Meloidogyne incognita J2 on development and growth of tomato conditions. cv.PT-3 under control. African Journal of Microbiology Research 2015; 9(20): 1376-1380.
  • Shi X., Qiao K., Li B., Zhang S. Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil. Crop Protection 2019; 126: 104922.
  • Singh G., Tiwari A., Choudhir G., Kumar A., Kumar S., Hariprasad P., Sharma S. Deciphering the role of Trichoderma sp. bioactives in combating the wilt causing cell wall degrading enzyme polygalacturonase produced by Fusarium oxysporum: an in-silico approach. Microbial Pathogenesis 2022; 168: 105610.
  • Zhao Y., Selvaraj JN., Xing F., Zhou L., Wang Y., Song H., Liu Y. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PloS one 2014; 9(3): e92486.
  • Wram CL., Zasada IA. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 2019; 109(9): 1605-1613.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nematoloji
Bölüm Araştırma Makalesi
Yazarlar

Harun Çimenkaya 0009-0001-3211-2045

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Şerife Evrim Arıcı 0000-0001-5453-5869

Gönderilme Tarihi 4 Şubat 2025
Kabul Tarihi 26 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Çimenkaya, H., Göze Özdemir, F. G., & Arıcı, Ş. E. (2025). Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2151-2164. https://doi.org/10.47495/okufbed.1632885
AMA 1.Çimenkaya H, Göze Özdemir FG, Arıcı ŞE. Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2151-2164. doi:10.47495/okufbed.1632885
Chicago Çimenkaya, Harun, Fatma Gül Göze Özdemir, ve Şerife Evrim Arıcı. 2025. “Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 (5): 2151-64. https://doi.org/10.47495/okufbed.1632885.
EndNote Çimenkaya H, Göze Özdemir FG, Arıcı ŞE (01 Aralık 2025) Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2151–2164.
IEEE [1]H. Çimenkaya, F. G. Göze Özdemir, ve Ş. E. Arıcı, “Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy 5, ss. 2151–2164, Ara. 2025, doi: 10.47495/okufbed.1632885.
ISNAD Çimenkaya, Harun - Göze Özdemir, Fatma Gül - Arıcı, Şerife Evrim. “Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (01 Aralık 2025): 2151-2164. https://doi.org/10.47495/okufbed.1632885.
JAMA 1.Çimenkaya H, Göze Özdemir FG, Arıcı ŞE. Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2151–2164.
MLA Çimenkaya, Harun, vd. “Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy 5, Aralık 2025, ss. 2151-64, doi:10.47495/okufbed.1632885.
Vancouver 1.Çimenkaya H, Göze Özdemir FG, Arıcı ŞE. Domateste Meloidogyne incognita ve Fusarium oxysporum f.sp. radicis lycopersici Hastalık Kompleksinin Abamektin, Bacillus thuringiensis ve Bacillus subtilis Kullanılarak Mücadelesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi [Internet]. 01 Aralık 2025;8(5):2151-64. Erişim adresi: https://izlik.org/JA84FX57FP

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.