Araştırma Makalesi
BibTex RIS Kaynak Göster

Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi

Yıl 2025, Cilt: 8 Sayı: 5, 2079 - 2093, 15.12.2025
https://doi.org/10.47495/okufbed.1650134

Öz

Doğal liflerin çimentolu karışımlarda kullanımı, geri dönüştürülebilirliği, yenilenebilirliği, sürdürülebilir özellikleri ve diğer çevresel faydaları nedeniyle dikkat çekmektedir. Çeşitli doğal lifler arasında, uygun maliyetli, uzun ömürlü ve yenilenebilir bir doğal lif türü olan jüt lifi (JU), sürdürülebilir betonun mukavemetini ve ısı yalıtım özelliklerini iyileştirme yeteneği nedeniyle ilgiyi hak etmektedir. Bu araştırma, farklı lif uzunlarında (3, 4,5 ve 6 cm) ve farklı katkı oranlarında (%0, %0,5, %1 ve %1,5) JU lifinin çimento ağırlığınca sıradan Portland çimentosu (OPC) karışımlarına entegre ederek, mekanik özellikleri ve ısı yalıtım performansı üzerindeki etkisini incelemiştir. Sonuçlar, çimento ağırlığına göre %1 oranında JU lif eklenmesinin, %28,37 eğilme mukavemeti kazanımıyla %21,17’ye kadar yalıtım artışına yol açtığını göstermiştir. Lif uzunluğunun artması ve katkı oranlarının artması ile eğilme mukavemeti ve yalıtkanlık değerlerinde dikkate değer bir artış görünmektedir. Dolayısıyla bu çalışmada, farklı lif uzunlukları ve lif katkı oranlarının, mekanik-yalıtım özellikleri arasındaki ilişkilerin R²=0,98 korelasyon katsayısı ile yüksek doğrulukla tahmin edilebileceği ve güçlü bir istatistiksel ilişki gösterdiği ortaya konulmaktadır. Bu deneysel çalışma, inşaat sektöründe doğal liflerin beton karışımlarına entegrasyonunun etkili bir tasarım yaklaşımı olduğunu ortaya koymakta olup, jüt lifinin sürdürülebilir bir malzeme olarak çimento bazlı malzeme tasarımında önemli bir rol oynama potansiyeline sahip olduğunu göstermektedir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Kaynakça

  • Althoey F., Ansari WS., Sufian M., Deifalla AF. Advancements in low-carbon concrete as a construction material for the sustainable built environment. Developments in the Built Environment 2023; 16: 100284.
  • Ardanuy M., Claramunt J., Toledo Filho RD. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials 2015; 79: 115-128.
  • ASTM C1113/C1113-09. Standard test method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique). ASTM International, West Conshohocken, PA. 2009.
  • Bhandari R. Augmentation of coconut fiber with ground granulated blast furnace slag reinforced lightweight aggregated concrete: A review. International Journal of Innovative Research in Modern Physics & Science (IJIRMPS) 2022; 10(2): 2349-7300.
  • Bittner CM., Oettel V. Fiber reinforced concrete with natural plant fibers-investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability 2022; 14(19): 12011.
  • Chen W., Xie Y., Li B., Wang J., Thom N. Role of aggregate and fiber in strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials 2021; 299: 124002.
  • Chen Z., Zhao G., Wei J., Chen C., Tang Y. Residual impact resistance behavior of PVA fiber-reinforced cement mortar containing Nano-SiO₂ after exposure to chloride erosion. Construction and Building Materials 2024; 414: 134990.
  • Ferreira SR., Martinelli E., Pepe M., de Andrade Silva F., Toledo Filho RD. Inverse identification of the bond behavior for jute fibers in cementitious matrix. Composites Part B: Engineering 2016; 95: 440-452.
  • Filazi A., Tortuk S., Pul M. Determination of optimum blast furnace slag ash and hemp fiber ratio in cement mortars. Structures 2023; 57: 10502.
  • García G., Cabrera R., Rolón J., Pichardo R., Thomas C. Natural fibers as reinforcement of mortar and concrete: A systematic review from Central and South American regions. Journal of Building Engineering 2024; 98: 111267.
  • Gao J., Wang Z., Zhang T., Zhou L. Dispersion of carbon fibers in cement-based composites with different mixing methods. Construction and Building Materials 2017; 134: 220-227.
  • Guehlouz I., Ben Amma BK., Belkadi AA., Soualhi H. Experimental analysis of mechanical behavior, rheology, and endogenous shrinkage in high-performance concrete with flax and polypropylene fibers. Construction and Building Materials 2025; 460: 139856.
  • Hejazi SM., Sheikhzadeh M., Abtahi SM., Zadhoush A. A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials 2012; 30: 100-116.
  • Hill CA., Khalil HA., Hale MD. A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products 1998; 8(1): 53-63.
  • Holschemacher K., Mueller T., Ribakov Y. Effect of steel fibers on mechanical properties of high-strength concrete. Materials and Design 2010; 31: 2604-2615.
  • Islam MS., Ahmed SJU. Influence of jute fiber on concrete properties. Construction and Building Materials 2018; 189: 768-776. Juarez CA., Fajardo G., Monroy S., Duran-Herrera A., Valdez P., Magniont C. Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Construction and Building Materials 2015; 91: 164-170.
  • Juarez-Alvarado CA., Magniont C., Escadeillas G., Terán-Torres BT., Rosas-Diaz F., Valdez-Tamez PL.Sustainable proposal for plant-based cementitious composites: Evaluation of their mechanical, durability, and comfort properties. Sustainability 2022; 14: 14397.
  • Khan M., McNally CA. Holistic review on the contribution of civil engineers for driving sustainable concrete construction in the built environment. Developments in the Built Environment 2023; 16: 100273.
  • Kund SP., Chakraborty S., Roy A., Adhikari B., Majumder SB. Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials 2012; 37: 841-850.
  • Lee GW., Choi YC. Effect of abaca natural fiber on the setting behavior and autogenous shrinkage of cement composite. Journal of Building Engineering 2022; 56: 104719.
  • Majumder A., Stochino F., Frattolillo A., Valdés M., Mancusi G., Martinelli E. Jute fiber reinforced mortars: Mechanical response and thermal performance. Journal of Building Engineering 2023; 66: 105888.
  • Mistretta F., Stochino F., Sassu M. Structural and thermal retrofitting of masonry walls: An integrated cost-analysis approach for the Italian context. Building and Environment 2019; 155: 127-136.
  • Onuaguluchi O., Banthia N. Plant-based natural fiber reinforced cement composites: a review. Cement and Concrete Composites 2016; 68: 96-108.
  • Özen S., Benlioğlu A., Mardani A., Altın Y., Bedeloğlu A. Effect of graphene oxide-coated jute fiber on mechanical and durability properties of concrete mixtures. Construction and Building Materials 2024; 448: 138225.
  • Raghoo Y., Ramasawmy H., Gooroochurn M., Chummun J., Seeboo A., Brown N. A further milestone to the use of natural fibers in concrete – past findings, barriers and novel research avenues. IOP Conference Series, Materials Science and Engineering 2021; 1203(2): 022038.
  • Rahimi M., Hisseine OA., Tagnit-Hamou A. Effectiveness of treated flax fibers in improving the early age behavior of high-performance concrete. Journal of Building Engineering 2022; 45: 103448.
  • Rocha DL., Tambara LU., Marvila MT., Pereira EC., Souza D., de Azevedo ARG. A review of the use of natural fibers in cement composites: concepts, applications and Brazilian history. Polymers 2022; 14(10): 1-22.
  • Shah SFA., Chen B., Oderji SY., Haque MA., Ahmad MR. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Construction and Building Materials 2020; 243: 118221.
  • Sultana N., Hossain SMZ., Alam MS., Hashish MMA., Islam MS. An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials 2020; 243: 118216.
  • Thapa K., Sedai S., Paudel J., Gyawali TR. Investigation on the potential of Eulaliopsis binata (babiyo) as a sustainable fiber reinforcement for mortar and concrete. Case Studies in Construstion Materials 2024; 20: 03115.
  • Tiwari S., Sahu AK., Pathak RP. Mechanical properties and durability study of jute fiber reinforced concrete. IOP Conference Series: Materials Science and Engineering 2020; 961: 012009.
  • TS EN 12390-4 (2002). Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 12390-5 (2019). Testing hardened concrete - Part 5: Flexural strength of test specimens. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 196-1 (2009). Methods of testing cement: Part 1. Determination of strength. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 206+A2 (2021). Concrete - specification, performance, production and conformity. Turkish Standard Institute, Ankara (in Turkish).
  • Venkatarama Reddy BV. Sustainable materials for low carbon buildings. International Journal of Low-Carbon Technologies 2009; 4(3): 175-181.
  • Yan PL., Chouw N., Huang L., Kasal B. Effect of alkali treatment on microstructure and mechanical properties of coir fibers, coir fiber reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 2016; 112(6): 168-182.
  • Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer, and polymer composites in civil engineering. Composites Part B: Engineering 2016; 92: 94-132.
  • Yooprasertchai E., Wiwatrojanagul P., Pimanmas A. A use of natural sisal and jute fiber composites for seismic retrofitting of nonductile rectangular reinforced concrete columns. Journal of Building Engineering 2022; 52: 104521.

Effect of Jute Fiber Length and Content Rate on Mechanical and Thermal Insulation Properties in Sustainable Concrete Design

Yıl 2025, Cilt: 8 Sayı: 5, 2079 - 2093, 15.12.2025
https://doi.org/10.47495/okufbed.1650134

Öz

The use of natural fibers in cementitious mixtures is attracting attention due to their recyclability, renewability, sustainable properties and other environmental benefits. Among various natural fibers, jute fiber (JU), a cost-effective, long-lasting and renewable type of natural fiber, deserves attention due to its ability to improve the strength and thermal insulation properties of sustainable concrete. This research investigated the effect of different fiber lengths (3, 4,5 and 6 cm) and different content ratios (0%, 0,5%, 1% and 1,5%) of JU fiber on the mechanical properties and thermal insulation performance of ordinary Portland cement (OPC) mixtures by weight of cement. The results showed that the addition of JU fiber at 1% by weight of cement led to an insulation increase of up to 21,17% with a flexural strength gain of 28,37%. There is a significant increase in flexural strength and insulation values with increasing fiber length and additive ratios. Therefore, this study shows that the relationships between the mechanical-insulation properties of different fiber lengths and fiber additive ratios can be predicted with high accuracy with a correlation coefficient of R²=0,98 and show a strong statistical relationship. This experimental study reveals that the integration of natural fibers into concrete mixes is an effective design approach in the construction industry and shows that jute fiber has the potential to play an important role in cement-based material design as a sustainable material.

Kaynakça

  • Althoey F., Ansari WS., Sufian M., Deifalla AF. Advancements in low-carbon concrete as a construction material for the sustainable built environment. Developments in the Built Environment 2023; 16: 100284.
  • Ardanuy M., Claramunt J., Toledo Filho RD. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials 2015; 79: 115-128.
  • ASTM C1113/C1113-09. Standard test method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique). ASTM International, West Conshohocken, PA. 2009.
  • Bhandari R. Augmentation of coconut fiber with ground granulated blast furnace slag reinforced lightweight aggregated concrete: A review. International Journal of Innovative Research in Modern Physics & Science (IJIRMPS) 2022; 10(2): 2349-7300.
  • Bittner CM., Oettel V. Fiber reinforced concrete with natural plant fibers-investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability 2022; 14(19): 12011.
  • Chen W., Xie Y., Li B., Wang J., Thom N. Role of aggregate and fiber in strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials 2021; 299: 124002.
  • Chen Z., Zhao G., Wei J., Chen C., Tang Y. Residual impact resistance behavior of PVA fiber-reinforced cement mortar containing Nano-SiO₂ after exposure to chloride erosion. Construction and Building Materials 2024; 414: 134990.
  • Ferreira SR., Martinelli E., Pepe M., de Andrade Silva F., Toledo Filho RD. Inverse identification of the bond behavior for jute fibers in cementitious matrix. Composites Part B: Engineering 2016; 95: 440-452.
  • Filazi A., Tortuk S., Pul M. Determination of optimum blast furnace slag ash and hemp fiber ratio in cement mortars. Structures 2023; 57: 10502.
  • García G., Cabrera R., Rolón J., Pichardo R., Thomas C. Natural fibers as reinforcement of mortar and concrete: A systematic review from Central and South American regions. Journal of Building Engineering 2024; 98: 111267.
  • Gao J., Wang Z., Zhang T., Zhou L. Dispersion of carbon fibers in cement-based composites with different mixing methods. Construction and Building Materials 2017; 134: 220-227.
  • Guehlouz I., Ben Amma BK., Belkadi AA., Soualhi H. Experimental analysis of mechanical behavior, rheology, and endogenous shrinkage in high-performance concrete with flax and polypropylene fibers. Construction and Building Materials 2025; 460: 139856.
  • Hejazi SM., Sheikhzadeh M., Abtahi SM., Zadhoush A. A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials 2012; 30: 100-116.
  • Hill CA., Khalil HA., Hale MD. A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products 1998; 8(1): 53-63.
  • Holschemacher K., Mueller T., Ribakov Y. Effect of steel fibers on mechanical properties of high-strength concrete. Materials and Design 2010; 31: 2604-2615.
  • Islam MS., Ahmed SJU. Influence of jute fiber on concrete properties. Construction and Building Materials 2018; 189: 768-776. Juarez CA., Fajardo G., Monroy S., Duran-Herrera A., Valdez P., Magniont C. Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Construction and Building Materials 2015; 91: 164-170.
  • Juarez-Alvarado CA., Magniont C., Escadeillas G., Terán-Torres BT., Rosas-Diaz F., Valdez-Tamez PL.Sustainable proposal for plant-based cementitious composites: Evaluation of their mechanical, durability, and comfort properties. Sustainability 2022; 14: 14397.
  • Khan M., McNally CA. Holistic review on the contribution of civil engineers for driving sustainable concrete construction in the built environment. Developments in the Built Environment 2023; 16: 100273.
  • Kund SP., Chakraborty S., Roy A., Adhikari B., Majumder SB. Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials 2012; 37: 841-850.
  • Lee GW., Choi YC. Effect of abaca natural fiber on the setting behavior and autogenous shrinkage of cement composite. Journal of Building Engineering 2022; 56: 104719.
  • Majumder A., Stochino F., Frattolillo A., Valdés M., Mancusi G., Martinelli E. Jute fiber reinforced mortars: Mechanical response and thermal performance. Journal of Building Engineering 2023; 66: 105888.
  • Mistretta F., Stochino F., Sassu M. Structural and thermal retrofitting of masonry walls: An integrated cost-analysis approach for the Italian context. Building and Environment 2019; 155: 127-136.
  • Onuaguluchi O., Banthia N. Plant-based natural fiber reinforced cement composites: a review. Cement and Concrete Composites 2016; 68: 96-108.
  • Özen S., Benlioğlu A., Mardani A., Altın Y., Bedeloğlu A. Effect of graphene oxide-coated jute fiber on mechanical and durability properties of concrete mixtures. Construction and Building Materials 2024; 448: 138225.
  • Raghoo Y., Ramasawmy H., Gooroochurn M., Chummun J., Seeboo A., Brown N. A further milestone to the use of natural fibers in concrete – past findings, barriers and novel research avenues. IOP Conference Series, Materials Science and Engineering 2021; 1203(2): 022038.
  • Rahimi M., Hisseine OA., Tagnit-Hamou A. Effectiveness of treated flax fibers in improving the early age behavior of high-performance concrete. Journal of Building Engineering 2022; 45: 103448.
  • Rocha DL., Tambara LU., Marvila MT., Pereira EC., Souza D., de Azevedo ARG. A review of the use of natural fibers in cement composites: concepts, applications and Brazilian history. Polymers 2022; 14(10): 1-22.
  • Shah SFA., Chen B., Oderji SY., Haque MA., Ahmad MR. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Construction and Building Materials 2020; 243: 118221.
  • Sultana N., Hossain SMZ., Alam MS., Hashish MMA., Islam MS. An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials 2020; 243: 118216.
  • Thapa K., Sedai S., Paudel J., Gyawali TR. Investigation on the potential of Eulaliopsis binata (babiyo) as a sustainable fiber reinforcement for mortar and concrete. Case Studies in Construstion Materials 2024; 20: 03115.
  • Tiwari S., Sahu AK., Pathak RP. Mechanical properties and durability study of jute fiber reinforced concrete. IOP Conference Series: Materials Science and Engineering 2020; 961: 012009.
  • TS EN 12390-4 (2002). Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 12390-5 (2019). Testing hardened concrete - Part 5: Flexural strength of test specimens. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 196-1 (2009). Methods of testing cement: Part 1. Determination of strength. Turkish Standard Institute, Ankara (in Turkish).
  • TS EN 206+A2 (2021). Concrete - specification, performance, production and conformity. Turkish Standard Institute, Ankara (in Turkish).
  • Venkatarama Reddy BV. Sustainable materials for low carbon buildings. International Journal of Low-Carbon Technologies 2009; 4(3): 175-181.
  • Yan PL., Chouw N., Huang L., Kasal B. Effect of alkali treatment on microstructure and mechanical properties of coir fibers, coir fiber reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 2016; 112(6): 168-182.
  • Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer, and polymer composites in civil engineering. Composites Part B: Engineering 2016; 92: 94-132.
  • Yooprasertchai E., Wiwatrojanagul P., Pimanmas A. A use of natural sisal and jute fiber composites for seismic retrofitting of nonductile rectangular reinforced concrete columns. Journal of Building Engineering 2022; 52: 104521.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Hakan Sarıkaya 0000-0002-8043-3302

Gülşah Susurluk 0000-0003-3284-2248

Gönderilme Tarihi 3 Mart 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Sarıkaya, H., & Susurluk, G. (2025). Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2079-2093. https://doi.org/10.47495/okufbed.1650134
AMA Sarıkaya H, Susurluk G. Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2025;8(5):2079-2093. doi:10.47495/okufbed.1650134
Chicago Sarıkaya, Hakan, ve Gülşah Susurluk. “Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 5 (Aralık 2025): 2079-93. https://doi.org/10.47495/okufbed.1650134.
EndNote Sarıkaya H, Susurluk G (01 Aralık 2025) Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2079–2093.
IEEE H. Sarıkaya ve G. Susurluk, “Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, ss. 2079–2093, 2025, doi: 10.47495/okufbed.1650134.
ISNAD Sarıkaya, Hakan - Susurluk, Gülşah. “Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (Aralık2025), 2079-2093. https://doi.org/10.47495/okufbed.1650134.
JAMA Sarıkaya H, Susurluk G. Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2079–2093.
MLA Sarıkaya, Hakan ve Gülşah Susurluk. “Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, 2025, ss. 2079-93, doi:10.47495/okufbed.1650134.
Vancouver Sarıkaya H, Susurluk G. Jüt Lif Uzunluğu ve Katkı Oranının Sürdürülebilir Beton Tasarımında Mekanik ve Isı Yalıtım Özelliklerine Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2079-93.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.