Syntrichia ruralis (Hedw.) F. Weber & D. Mohr. Kara Yosunundan Selüloz ve Selüloz Nanokristal Üretimi ve Karakterizasyonu
Yıl 2026,
Cilt: 9 Sayı: 1, 460 - 474, 14.01.2026
Şeyma Boyar
,
Yavuz Selim Cakmak
,
Seher Karaman
Öz
Selüloz doğada en bol ve yaygın polimerdir; yenilebilir, kullanıma hazır ve geliştirilebilir polimerik malzemelerin yerini alabilmesi nedeniyle birçok araştırmacının dikkatini çekmektedir. Ancak, selüloz üretimi için genellikle çok yıllık ağaçlar tercih edilmekte ve bu da ormanların yok olmasına ve doğal dengenin bozulmasına neden olmaktadır. Mevcut çalışmada, selüloz üretimi için yeni bir alternatif kaynak geliştirmek amacıyla Syntrichia ruralis selülozunu izole etmek amaçlanmıştır. Selüloz nanokristalleri (CN) elde etmek için asit hidrolizi uygulanmıştır. Bu çalışmada elde edilen selüloz ve CN'nin morfolojisi, topolojisi, kristalinitesi ve termal özellikleri ayrıntılı olarak incelenmiştir. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile gösterildiği gibi, alkali ve ağartma işlemleriyle üretilen selülozdan hemiselüloz ve lignin neredeyse tamamen uzaklaştırılmıştır. Zeta potansiyelinin dispersiyon kararlılığı üzerindeki önemli etkileri, ortaya çıkan pürüzlülüğü belirlemek için atomik kuvvet mikroskobu (AFM) kullanılarak araştırılmıştır. TGA'nın termal ve mekanik özellikleri incelenmiştir. Ayrıca, CN filmlerinin morfolojisi SEM ölçümleriyle incelenmiştir. Sonuç olarak, Syntrichia ruralis' in birçok alanda kullanım potansiyeline sahip alternatif bir nanoselüloz kaynağı olduğu gösterilmiştir.
Etik Beyan
Yazarlar herhangi bir çıkar çatışması bildirmemişlerdir.
Teşekkür
Bu çalışmaya yaptığı değerli yorumlar ve katkılarından dolayı Prof. Dr. Murat Kaya'ya teşekkür ederiz.
Kaynakça
-
Alataş M. Abant dağları epifitik bryofit flora ve vejetasyonunun araştırılması. Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü, 32-59 Zonguldak, Turkey, 2012.
-
Bano S., Negi YS. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers 2016; 157: 1041–1049.
-
Bilek S., Yalçın Melikoğlu A., Cesur S. Tarımsal atıklardan selüloz nanokristallerinin eldesi, karakteristik özellikleri ve uygulama alanları. Akademik Gıda 2019; 17: 140-148.
-
Cai Q., Fan Z., Chen J., Guo W., Ma F., Sun S., Zhou Q. Dissolving process of bamboo powder analyzed by FT-IR spectroscopy. Journal of Molecular Structure 2018; 1171: 639-643.
-
Casas C., Brugués M., Cros MR., Sérgio C. Handbook of mosses of the iberian peninsula and the balearic islands. Spain: Institut d’Estudis Catalans, 2006.
-
Cenğiz A. Balya orman işletme şefliği (Balıkesir) karayosunu florası. Çankırı Karatekin Üniversitesi Fen Bilimleri Enstitüsü, 1, Çankırı, Türkiye, 2019.
-
Chen W., Yu H., Liu Y., Chen P., Zhang M., Hai Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments.Carbohydrate Polymers 2011; 83(4): 1804-1811.
-
Cui S., Zhang S., Ge S., Xiong L., Sun Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products 2016; 83: 346-352.
-
Duval A., Lawoko M. A review on lignin-based polymeric, micro-and nanostructured materials. React. Funct. Polym 2014; 85: 78-96.
-
Faradilla RHF., Lee G., Rawal A., Hutomo T., Stenzel MH., Arcot J. Nanocellulose characteristics from the inner and outer layer of banana pseudostem prepared by TEMPO-mediated oxidation. Cellulose 2016; 3023-3037.
-
Fernandez Nunez EG., Barchi AC., Ito S., Escaramboni B., Herculano RD., Mayer CRM., de Oliva Neto P. Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes. Journal of Chemical Technology & Biotechnology 2017; 92: 684-692.
-
Frey W., Kürschner H. Bryosoziologische untersuchungen in jordanien, lebens-strategienanalyse der terrestrichen und epilithischen Moosgesellschaften. Fragmenta Floristica et Geobotanica 1995; 40: 491-511.
-
Frey W., Stech M. Bryophytes and seedless vascular plants. Stuttgart: 13th ed. Berlin: Gebrüder Borntraeger; 2009.
-
Herbaut M., Zoghlami A., Habrant A., Falourd X., Foucat L., Chabbert B., Paës G. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 2018; 11: 1–17.
-
He R., Gai L., Zhu Z., Gu H., Sun P. Industrial by-products of tiger nut starch as a source of cellulose
nanocrystals for biodegradable packaging materials. International Journal of Biological Macromolecules 2025; 306: 141422.
-
Ilyas RA., Sapuan SM., Ishak MR. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydrate Polymers 2018; 1038–1051.
-
Kang SW., Park YS., Lee JS., Hong SI., Kim SW. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology 2004; 91: 153-156.
-
Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry. Fundamentals and Analytical Methods. 1998; 1: 1-7.
-
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials. Green Nanomaterials. 2011; 50: 5438-5466.
-
Kürschner H., Frey W. Liverworts, mosses and hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta) second enlarged and revised edition. J. Cramer. 2020; 149: 267.
-
Lestari P., Elfrida N., Suryani A., Suryadi Y. Study on the production of bacterial cellulose from Acetobacter xylinum using agrowaste. Jordan Journal of Biological Sciences 2014; 7(1): 75-80.
-
Majoinen J., Kontturi E., Ikkala O., Gray DG. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 2012; 19: 1599-1605.
-
Md. Islam H., Ara MH., Khan MA., Naime J., Md. Khan AR., Md. Rahman L., Ruhane TA. Preparation of cellulose nanocrystals biofilm from coconut coir as an alternative source of food packaging material. ACS Omega 2025; 10: 8960−8970.
-
Moud AA. Chiral liquid crystalline properties of cellulose nanocrystals: fundamentals and applications. ACSOmega 2022a; 30673–30699.
-
Moud AA. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. International Journal of Biological Macromolecules 2022b; 222: 1-29.
-
Naduparambath S., Jinitha TV., Shaniba V., Sreejith MP., Balan AK., Purushothaman E. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers 2018; 13–20.
-
Özkan Çiçek B. Investigation of swelling behavior of cross-linked chitosan/cellulose/graphene composite. Firat University Journal of Engineering 2021; 33(1).
-
Pang T., Wang G., Sui W., Xu T., Wang D., Si C. Lignin-based support for metal catalysts: Synthetic strategies, performance boost, and application advances. Coordination Chemistry Reviews 2025; 528: 216426.
-
Peng Y., Wei X., Liang Y., Wang X., Chen S., Niu X. Advances in structural color composite films based on cellulose nanocrystals. Industrial Crops and Products 2024; 221: 119294.
-
Prado KS., Spinac´e MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 2018; 410-416.
-
Ramírez CM., Castro C., Zuluaga R., Gañán P. Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by products as alternative low cost feedstocks. Journal of Polymers and the Environment 2018; 26: 830-837.
-
Smith AJE. The moss flora of Britain and Ireland. Second Edition. Cambridge Univ. Press. Cambridge, England 2004; 1012.
-
Sohail M., Siddiqi R., Ahmad A., Khan SA. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology 2009; 25: 437-441.
-
Tayeb AH., Amini E., Ghasemi S., Tajvidi M. Binding properties and applications: A review. Molecules Cellulose Nanomaterials 2018; 23(10): 2684.
-
Thakur VK., Thakur MK. Recent advances in green hydrogels from lignin: a review. Int. J. Biol. Macromol 2015; 72: 834–847.
-
Tutuş A., Kazaskeroğlu Y., Çiçekler M. Evaluation of tea wastes in usage pulp and paper production. BioResources 2015; 10(3): 5407-5416.
URL-1<http://www.bryoecol.mtu.edu. Erişim tarihi: 15.05.2022
-
URL-2<Chaplin, M., 2006. http://www.lsbu.ac.uk/water/hycel.html. Erişim tarihi: 11.04.2022
-
Wada M., Okano T., Sugiyama J., Horii F. Characterization of tension and normally lignified wood cellulose in populus maximowiczii. Cellulose 1995; 2: 223-233.
-
Wang K., Wang B., Hu R., Zhao X., Li H., Zhou G., Song L., Wu A. Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis. Carbohydrate Polymers 2019; 221: 127-136.
-
Watson EV. British mosses and liverworts: An ıntroductory work. British Mosses and Liverworts. Cambridge University Press 1981; 0-521-28536-4.
-
Zander RH. Genera of The pottiaceae: mosses of harsh environments. Buffalo, Bulletin of the Buffalo Society. 1993; 32, New York, USA.
Production and Characterization of Cellulose and Cellulose Nanocrystals From Moss Syntrichia ruralis (Hedw.) F. Weber & D. Mohr.
Yıl 2026,
Cilt: 9 Sayı: 1, 460 - 474, 14.01.2026
Şeyma Boyar
,
Yavuz Selim Cakmak
,
Seher Karaman
Öz
Cellulose is the most abundant and widespread polymer in nature; it attracts the attention of many researchers as it can replace edible, ready-to-use and developable polymeric materials. However, perennial trees are generally preferred for cellulose production, which causes the destruction of forests and the disruption of the natural balance. The present study aimed to isolate Syntrichia ruralis cellulose to develop a new alternative source for cellulose production. Acid hydrolysis was applied to obtain cellulose nanocrystals (CN). The morphology, topology, crystallinity and thermal properties of the cellulose and CN obtained in this study were investigated in detail. Hemicellulose and lignin were almost completely removed from cellulose produced by alkali and bleaching processes, as shown by Fourier transform infrared spectroscopy (FTIR). The significant effects of zeta potential on dispersion stability were investigated using atomic force microscopy (AFM) to determine the resulting roughness. Thermal and mechanical properties of TGA were investigated. In addition, the morphology of CN films was investigated by SEM measurements. As a result, Syntrichia ruralis has been shown to be an alternative source of nanocellulose with the potential for use in many fields.
Etik Beyan
Authors have declared no conflict of interest.
Teşekkür
We would like to thank Prof. Dr. Murat Kaya for her valuable comments and contributions to this study.
Kaynakça
-
Alataş M. Abant dağları epifitik bryofit flora ve vejetasyonunun araştırılması. Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü, 32-59 Zonguldak, Turkey, 2012.
-
Bano S., Negi YS. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers 2016; 157: 1041–1049.
-
Bilek S., Yalçın Melikoğlu A., Cesur S. Tarımsal atıklardan selüloz nanokristallerinin eldesi, karakteristik özellikleri ve uygulama alanları. Akademik Gıda 2019; 17: 140-148.
-
Cai Q., Fan Z., Chen J., Guo W., Ma F., Sun S., Zhou Q. Dissolving process of bamboo powder analyzed by FT-IR spectroscopy. Journal of Molecular Structure 2018; 1171: 639-643.
-
Casas C., Brugués M., Cros MR., Sérgio C. Handbook of mosses of the iberian peninsula and the balearic islands. Spain: Institut d’Estudis Catalans, 2006.
-
Cenğiz A. Balya orman işletme şefliği (Balıkesir) karayosunu florası. Çankırı Karatekin Üniversitesi Fen Bilimleri Enstitüsü, 1, Çankırı, Türkiye, 2019.
-
Chen W., Yu H., Liu Y., Chen P., Zhang M., Hai Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments.Carbohydrate Polymers 2011; 83(4): 1804-1811.
-
Cui S., Zhang S., Ge S., Xiong L., Sun Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products 2016; 83: 346-352.
-
Duval A., Lawoko M. A review on lignin-based polymeric, micro-and nanostructured materials. React. Funct. Polym 2014; 85: 78-96.
-
Faradilla RHF., Lee G., Rawal A., Hutomo T., Stenzel MH., Arcot J. Nanocellulose characteristics from the inner and outer layer of banana pseudostem prepared by TEMPO-mediated oxidation. Cellulose 2016; 3023-3037.
-
Fernandez Nunez EG., Barchi AC., Ito S., Escaramboni B., Herculano RD., Mayer CRM., de Oliva Neto P. Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes. Journal of Chemical Technology & Biotechnology 2017; 92: 684-692.
-
Frey W., Kürschner H. Bryosoziologische untersuchungen in jordanien, lebens-strategienanalyse der terrestrichen und epilithischen Moosgesellschaften. Fragmenta Floristica et Geobotanica 1995; 40: 491-511.
-
Frey W., Stech M. Bryophytes and seedless vascular plants. Stuttgart: 13th ed. Berlin: Gebrüder Borntraeger; 2009.
-
Herbaut M., Zoghlami A., Habrant A., Falourd X., Foucat L., Chabbert B., Paës G. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 2018; 11: 1–17.
-
He R., Gai L., Zhu Z., Gu H., Sun P. Industrial by-products of tiger nut starch as a source of cellulose
nanocrystals for biodegradable packaging materials. International Journal of Biological Macromolecules 2025; 306: 141422.
-
Ilyas RA., Sapuan SM., Ishak MR. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydrate Polymers 2018; 1038–1051.
-
Kang SW., Park YS., Lee JS., Hong SI., Kim SW. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology 2004; 91: 153-156.
-
Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry. Fundamentals and Analytical Methods. 1998; 1: 1-7.
-
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials. Green Nanomaterials. 2011; 50: 5438-5466.
-
Kürschner H., Frey W. Liverworts, mosses and hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta) second enlarged and revised edition. J. Cramer. 2020; 149: 267.
-
Lestari P., Elfrida N., Suryani A., Suryadi Y. Study on the production of bacterial cellulose from Acetobacter xylinum using agrowaste. Jordan Journal of Biological Sciences 2014; 7(1): 75-80.
-
Majoinen J., Kontturi E., Ikkala O., Gray DG. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 2012; 19: 1599-1605.
-
Md. Islam H., Ara MH., Khan MA., Naime J., Md. Khan AR., Md. Rahman L., Ruhane TA. Preparation of cellulose nanocrystals biofilm from coconut coir as an alternative source of food packaging material. ACS Omega 2025; 10: 8960−8970.
-
Moud AA. Chiral liquid crystalline properties of cellulose nanocrystals: fundamentals and applications. ACSOmega 2022a; 30673–30699.
-
Moud AA. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. International Journal of Biological Macromolecules 2022b; 222: 1-29.
-
Naduparambath S., Jinitha TV., Shaniba V., Sreejith MP., Balan AK., Purushothaman E. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers 2018; 13–20.
-
Özkan Çiçek B. Investigation of swelling behavior of cross-linked chitosan/cellulose/graphene composite. Firat University Journal of Engineering 2021; 33(1).
-
Pang T., Wang G., Sui W., Xu T., Wang D., Si C. Lignin-based support for metal catalysts: Synthetic strategies, performance boost, and application advances. Coordination Chemistry Reviews 2025; 528: 216426.
-
Peng Y., Wei X., Liang Y., Wang X., Chen S., Niu X. Advances in structural color composite films based on cellulose nanocrystals. Industrial Crops and Products 2024; 221: 119294.
-
Prado KS., Spinac´e MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 2018; 410-416.
-
Ramírez CM., Castro C., Zuluaga R., Gañán P. Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by products as alternative low cost feedstocks. Journal of Polymers and the Environment 2018; 26: 830-837.
-
Smith AJE. The moss flora of Britain and Ireland. Second Edition. Cambridge Univ. Press. Cambridge, England 2004; 1012.
-
Sohail M., Siddiqi R., Ahmad A., Khan SA. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology 2009; 25: 437-441.
-
Tayeb AH., Amini E., Ghasemi S., Tajvidi M. Binding properties and applications: A review. Molecules Cellulose Nanomaterials 2018; 23(10): 2684.
-
Thakur VK., Thakur MK. Recent advances in green hydrogels from lignin: a review. Int. J. Biol. Macromol 2015; 72: 834–847.
-
Tutuş A., Kazaskeroğlu Y., Çiçekler M. Evaluation of tea wastes in usage pulp and paper production. BioResources 2015; 10(3): 5407-5416.
URL-1<http://www.bryoecol.mtu.edu. Erişim tarihi: 15.05.2022
-
URL-2<Chaplin, M., 2006. http://www.lsbu.ac.uk/water/hycel.html. Erişim tarihi: 11.04.2022
-
Wada M., Okano T., Sugiyama J., Horii F. Characterization of tension and normally lignified wood cellulose in populus maximowiczii. Cellulose 1995; 2: 223-233.
-
Wang K., Wang B., Hu R., Zhao X., Li H., Zhou G., Song L., Wu A. Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis. Carbohydrate Polymers 2019; 221: 127-136.
-
Watson EV. British mosses and liverworts: An ıntroductory work. British Mosses and Liverworts. Cambridge University Press 1981; 0-521-28536-4.
-
Zander RH. Genera of The pottiaceae: mosses of harsh environments. Buffalo, Bulletin of the Buffalo Society. 1993; 32, New York, USA.