Araştırma Makalesi
BibTex RIS Kaynak Göster

Parçacık Sürü Optimizasyonu ile Tasarlanan Ayarlanmış Kütle Sönümleyicilerle Açık Deniz Rüzgar Türbinlerinde Titreşim Kontrolü

Yıl 2026, Cilt: 9 Sayı: 1, 292 - 306, 14.01.2026
https://doi.org/10.47495/okufbed.1700505

Öz

Küresel ölçekte sürdürülebilir enerjiye yönelik artan ilgiyle birlikte, çevresel avantajları ve yüksek enerji üretim potansiyeli sayesinde açık deniz rüzgar enerjisi önemli bir çözüm haline gelmiştir. Ancak açık deniz rüzgar türbinleri, deniz ortamının dinamik koşullarından kaynaklanan yapısal zorluklarla karşı karşıyadır. Mevcut çalışmada, açık deniz rüzgar türbini yapısında titreşim azaltma için tasarlanmış ayarlanmış bir kütle sönümleyicinin verimliliğini artırmak için Parçacık Sürüsü Optimizasyonu (PSO) kullanılmıştır. Sönümleyici parametrelerinin optimize edilmesiyle, yapısal titreşimler etkin bir şekilde azaltılarak enerji verimliliği artırılmakta, türbin ömrü uzatılmakta ve operasyonel kararlılık sağlanmaktadır. Elde edilen bulgular, açık deniz yenilenebilir enerji sistemlerinin güvenilirliğini ve performansını artırmada akıllı optimizasyon yöntemlerinin önemini vurgulamakta ve sürdürülebilir enerji geleceğine geçişi desteklemektedir

Kaynakça

  • Acar U., Kaska Ö., Tokgoz N. Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in turkey. Journal of Building Engineering 2021; 42: 102499.
  • Bakır H. Modeling and optimization of solar pv-battery based hybrid water pumping system with bldc motor drive. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2024; 7(3): 1010-1020.
  • Brodersen ML., Bjørke AS., Høgsberg J. Active tuned mass damper for damping of offshore wind turbine vibrations. Wind Energy 2016; 20(5): 837–852.
  • Caterino N. Semi-active control of a wind turbine via magnetorheological dampers. Journal of Sound and Vibration 2015; 345: 1–17.
  • Colherinhas GB., Petrini F., de Morais MVG., Bontempi F. Optimal design of passive-adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines. Wind Energy 2020; 24(6): 573–595.
  • Colwell S., Basu B. Tuned liquid column dampers in offshore wind turbines for structural control. Engineering Structures 2009; 31(2): 358–368.
  • Çaşka S., Özbaltan M. Comparison of the performances of symbolic discrete control synthesis and optimal pid controller in attitude control of quadcopter uav. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2024; 7(4): 1455-1469.
  • Dave G., Patel T., Mitra S. Global scenario on renewable energy and net zero goal emphasizing indian standpoint: a short review. Energy Systems 2025.
  • Deng Y., Zhang SY., Zhang M., Gou P. Frequency-dependent aerodynamic damping and its effects on dynamic responses of floating offshore wind turbines. Ocean Engineering 2023; 278: 114444.
  • Desalegn B., Gebeyehu D., Tamrat B., Tadiwose T., Lata A. Onshore versus offshore wind power trends and recent study practices in modeling of wind turbines’ life-cycle impact assessments. Cleaner Engineering and Technology 2023; 17: 100691.
  • Didier F., Liu YC., Laghrouche S., Depernet D. A comprehensive review on advanced control methods for floating offshore wind turbine systems above the rated wind speed. Energies 2024; 17(10): 2257.
  • Gao L., Huang J., Li X. An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process. Applied Soft Computing 2012; 12811): 3490–3499.
  • Gao Y., Zhai E., Li S., Zhang Z., Xu Z., Zhang G., Racic V., Chen J., Wang L., Zhang Z. Integrated design and real-world application of a tuned mass damper (tmd) with displacement constraints for large offshore monopile wind turbines. Ocean Engineering 2024; 292: 116568.
  • Hu Y., He E. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. Journal of Sound and Vibration 2017; 410: 447–472.
  • Işık C., Kuziboev B., Ongan S., Saidmamatov O., Mirkhoshimova M., Rajabov A. The volatility of global energy uncertainty: renewable alternatives. Energy 2024; 297: 131250.
  • İlkılıç C. Rüzgar enerjisi ve kullanımı. Fırat Üniversitesi Doğu Araştırmaları Dergisi 2003; 2(1): 44-48.
  • Jonkman B., Jonkman J. Fast v8.16.00a-bjj. National Renewable Energy Laboratory 2016.
  • Jonkman J., Matha D. Dynamics of offshore floating wind turbines-analysis of three concepts. Wind Energy 2011; 14(5): 557–569.
  • Kiriakidis P., Christoudias T., Kushta J., Lelieveld J. Projected wind and solar energy potential in the eastern mediterranean and middle east in 2050. Science of The Total Environment 2024; 927: 172120.
  • Lackner MA., Rotea MA. Structural control of floating wind turbines. Mechatronics 2011; 21(4): 704–719.
  • Luo N., Bottasso CL., Karimi HR., Zapateiro M. Semiactive control for floating offshore wind turbines subject to aero-hydro dynamic loads. Renewable Energy and Power Quality Journal 2011; 9(1): 772–777.
  • Song Z. Comparative application research of wind energy and solar energy. Highlights in Science, Engineering and Technology 2024; 111: 400-409.
  • Sun C. Semi-active control of monopile offshore wind turbines under multi-hazards. Mechanical Systems and Signal Processing 2018; 99(2): 285–305.
  • Tumse S., Bilgili M., Yildirim A., Sahin B. Comparative analysis of global onshore and offshore wind energy characteristics and potentials. Sustainability 2024; 16(15): 6614.
  • Tümay Ateş K. Short term photovoltaic power plant output power forecasting with hybrid method developed using multilayer artificial neural network model and cultural algorithm model. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2022; 5(1): 342-354.
  • Xu X., Wei Z., Ji Q., Wang C., Gao G. Global renewable energy development: influencing factors, trend predictions and countermeasures. Resources Policy 2019; 63: 101470.
  • Xue J., Yang H., Song Y., Zhang C., Hu H. A fuzzy decision-making network model for offshore wind turbine selection based on simulated annealing algorithm. Ocean Engineering 2025; 315: 119816.
  • Yaghoubirad M., Azizi N., Ahmadi A., Zarei Z., Moosavian SF. Performance assessment of a solar pv module for different climate classifications based on energy, exergy, economic and environmental parameters. Energy Reports 2022; 8: 15712–15728.
  • Zuo H., Bi K., Hao H. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Engineering Structures 2017; 141: 303–315.

Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers

Yıl 2026, Cilt: 9 Sayı: 1, 292 - 306, 14.01.2026
https://doi.org/10.47495/okufbed.1700505

Öz

With the growing global emphasis on sustainable energy, offshore wind power has become a key solution due to its environmental advantages and strong energy generation potential. However, offshore wind turbines face significant structural challenges caused by dynamic marine conditions. The present study utilizes Particle Swarm Optimization (PSO) to enhance the efficiency of a tuned mass damper designed for vibration mitigation in an offshore wind turbine structure. By optimizing the damper parameters, the system effectively reduces structural vibrations, contributing to improved energy efficiency, extended turbine lifespan, and increased operational stability. The results highlight the importance of intelligent optimization methods in advancing the reliability and performance of offshore renewable energy systems, supporting the transition toward a more sustainable energy future.

Etik Beyan

The authors declare that have no competing interests.

Destekleyen Kurum

None.

Kaynakça

  • Acar U., Kaska Ö., Tokgoz N. Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in turkey. Journal of Building Engineering 2021; 42: 102499.
  • Bakır H. Modeling and optimization of solar pv-battery based hybrid water pumping system with bldc motor drive. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2024; 7(3): 1010-1020.
  • Brodersen ML., Bjørke AS., Høgsberg J. Active tuned mass damper for damping of offshore wind turbine vibrations. Wind Energy 2016; 20(5): 837–852.
  • Caterino N. Semi-active control of a wind turbine via magnetorheological dampers. Journal of Sound and Vibration 2015; 345: 1–17.
  • Colherinhas GB., Petrini F., de Morais MVG., Bontempi F. Optimal design of passive-adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines. Wind Energy 2020; 24(6): 573–595.
  • Colwell S., Basu B. Tuned liquid column dampers in offshore wind turbines for structural control. Engineering Structures 2009; 31(2): 358–368.
  • Çaşka S., Özbaltan M. Comparison of the performances of symbolic discrete control synthesis and optimal pid controller in attitude control of quadcopter uav. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2024; 7(4): 1455-1469.
  • Dave G., Patel T., Mitra S. Global scenario on renewable energy and net zero goal emphasizing indian standpoint: a short review. Energy Systems 2025.
  • Deng Y., Zhang SY., Zhang M., Gou P. Frequency-dependent aerodynamic damping and its effects on dynamic responses of floating offshore wind turbines. Ocean Engineering 2023; 278: 114444.
  • Desalegn B., Gebeyehu D., Tamrat B., Tadiwose T., Lata A. Onshore versus offshore wind power trends and recent study practices in modeling of wind turbines’ life-cycle impact assessments. Cleaner Engineering and Technology 2023; 17: 100691.
  • Didier F., Liu YC., Laghrouche S., Depernet D. A comprehensive review on advanced control methods for floating offshore wind turbine systems above the rated wind speed. Energies 2024; 17(10): 2257.
  • Gao L., Huang J., Li X. An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process. Applied Soft Computing 2012; 12811): 3490–3499.
  • Gao Y., Zhai E., Li S., Zhang Z., Xu Z., Zhang G., Racic V., Chen J., Wang L., Zhang Z. Integrated design and real-world application of a tuned mass damper (tmd) with displacement constraints for large offshore monopile wind turbines. Ocean Engineering 2024; 292: 116568.
  • Hu Y., He E. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. Journal of Sound and Vibration 2017; 410: 447–472.
  • Işık C., Kuziboev B., Ongan S., Saidmamatov O., Mirkhoshimova M., Rajabov A. The volatility of global energy uncertainty: renewable alternatives. Energy 2024; 297: 131250.
  • İlkılıç C. Rüzgar enerjisi ve kullanımı. Fırat Üniversitesi Doğu Araştırmaları Dergisi 2003; 2(1): 44-48.
  • Jonkman B., Jonkman J. Fast v8.16.00a-bjj. National Renewable Energy Laboratory 2016.
  • Jonkman J., Matha D. Dynamics of offshore floating wind turbines-analysis of three concepts. Wind Energy 2011; 14(5): 557–569.
  • Kiriakidis P., Christoudias T., Kushta J., Lelieveld J. Projected wind and solar energy potential in the eastern mediterranean and middle east in 2050. Science of The Total Environment 2024; 927: 172120.
  • Lackner MA., Rotea MA. Structural control of floating wind turbines. Mechatronics 2011; 21(4): 704–719.
  • Luo N., Bottasso CL., Karimi HR., Zapateiro M. Semiactive control for floating offshore wind turbines subject to aero-hydro dynamic loads. Renewable Energy and Power Quality Journal 2011; 9(1): 772–777.
  • Song Z. Comparative application research of wind energy and solar energy. Highlights in Science, Engineering and Technology 2024; 111: 400-409.
  • Sun C. Semi-active control of monopile offshore wind turbines under multi-hazards. Mechanical Systems and Signal Processing 2018; 99(2): 285–305.
  • Tumse S., Bilgili M., Yildirim A., Sahin B. Comparative analysis of global onshore and offshore wind energy characteristics and potentials. Sustainability 2024; 16(15): 6614.
  • Tümay Ateş K. Short term photovoltaic power plant output power forecasting with hybrid method developed using multilayer artificial neural network model and cultural algorithm model. Osmaniye Korkut Ata University Journal of The Institute of Science and Technology 2022; 5(1): 342-354.
  • Xu X., Wei Z., Ji Q., Wang C., Gao G. Global renewable energy development: influencing factors, trend predictions and countermeasures. Resources Policy 2019; 63: 101470.
  • Xue J., Yang H., Song Y., Zhang C., Hu H. A fuzzy decision-making network model for offshore wind turbine selection based on simulated annealing algorithm. Ocean Engineering 2025; 315: 119816.
  • Yaghoubirad M., Azizi N., Ahmadi A., Zarei Z., Moosavian SF. Performance assessment of a solar pv module for different climate classifications based on energy, exergy, economic and environmental parameters. Energy Reports 2022; 8: 15712–15728.
  • Zuo H., Bi K., Hao H. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Engineering Structures 2017; 141: 303–315.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Rüzgar Enerjisi Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Şenaslan 0000-0002-8789-489X

Boğaç Bilgiç

Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 16 Ağustos 2025
Yayımlanma Tarihi 14 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 9 Sayı: 1

Kaynak Göster

APA Şenaslan, İ., & Bilgiç, B. (2026). Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 292-306. https://doi.org/10.47495/okufbed.1700505
AMA 1.Şenaslan İ, Bilgiç B. Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;9(1):292-306. doi:10.47495/okufbed.1700505
Chicago Şenaslan, İbrahim, ve Boğaç Bilgiç. 2026. “Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 (1): 292-306. https://doi.org/10.47495/okufbed.1700505.
EndNote Şenaslan İ, Bilgiç B (01 Ocak 2026) Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 1 292–306.
IEEE [1]İ. Şenaslan ve B. Bilgiç, “Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, sy 1, ss. 292–306, Oca. 2026, doi: 10.47495/okufbed.1700505.
ISNAD Şenaslan, İbrahim - Bilgiç, Boğaç. “Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9/1 (01 Ocak 2026): 292-306. https://doi.org/10.47495/okufbed.1700505.
JAMA 1.Şenaslan İ, Bilgiç B. Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;9:292–306.
MLA Şenaslan, İbrahim, ve Boğaç Bilgiç. “Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, sy 1, Ocak 2026, ss. 292-06, doi:10.47495/okufbed.1700505.
Vancouver 1.Şenaslan İ, Bilgiç B. Vibration Control of Offshore Wind Turbines via Particle Swarm Optimized Tuned Mass Dampers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi [Internet]. 01 Ocak 2026;9(1):292-306. Erişim adresi: https://izlik.org/JA64LJ65CS

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.