Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Isı Transfer Akışkanı Boru Konfigürasyonları Altında Termal Enerji Depolama Sistemlerinde Faz Değiştiren Malzemenin Performans Değerlendirmesi

Yıl 2026, Cilt: 9 Sayı: 1, 416 - 438, 14.01.2026
https://doi.org/10.47495/okufbed.1763191

Öz

Bu çalışma, RT35HC faz değiştiren malzeme ile doldurulmuş bir kabuk-borulu gizli ısı depolama ünitesinde, farklı ısı transfer akışkanı (ITA) boru konfigürasyonlarının erime performansı ve enerji depolama özelliklerine etkilerini üç boyutlu sayısal olarak incelemektedir. Beş farklı ITA boru düzeni (Straight, 1P-1T, 1P-2T, 2P-1T ve 2P-2T) hem yatay hem dikey oryantasyonlarda değerlendirilmiştir. Tek borulu tasarımlarda, boru yüzey alanı eşitlenerek geometrinin erime süreci üzerindeki etkisi tek başına değerlendirilmiştir. Çift borulu/çok turlu helislerde ise artan yüzey alanı ve azalan FDM hacminin birlikte etkisi dikkate alınmıştır. Performans değerlendirmesi; sıvı fraksiyonu, depolanan enerji, ortalama ısı akısı ve ortalama Nusselt sayısı parametreleri üzerinden yapılmıştır. Analizler, dikey oryantasyonda 2P-2T’nin Straight konfigürasyona kıyasla %122.6 daha fazla enerji depoladığını ve erime süresinin belirgin şekilde kısaldığını ortaya koymuştur. Elde edilen bulgular, boru geometrisinin ve sistem oryantasyonunun erime dinamikleri ile enerji depolama verimliliği üzerindeki kritik rolünü vurgulamakta ve gizli ısı termal enerji depolama sistemleri için tasarım optimizasyonuna katkı sunmaktadır.

Kaynakça

  • Abdellatif HE., Belaadi A., Arshad A., Chai BX., Ghernaout D. Enhancing thermal energy storage system efficiency: Geometric analysis of phase change material integrated wedge-shaped heat exchangers. Applied Thermal Engineering 2025; 262: 125268.
  • Abdollahi SA., Faramarzi S., Azizi Gheshlaghchaei B., Amin SS. Heidarshenas MH., Majidi H., Talati F. Development of freezing process of phase change materials in cylindrical thermal energy storage tanks with various fin configurations. Scientific Reports 2025; 15(1).
  • Ahmed S., Abderrahmane A., Saeed AM., Guedri K., Mourad A., Younes O., Botmart T., Shah NA. Melting enhancement of PCM in a finned tube latent heat thermal energy storage. Scientific Reports 2022; 12(1): 1–14.
  • Ali AM., Bagdanavicius A., Barbour ER., Pottie DL., Garvey S., Rouse J., Baniamerian Z. Improving the performance of a shell and tube latent heat thermal energy storage through modifications of heat transfer pipes: A comprehensive investigation on various configurations. Journal of Energy Storage 2024; 96: 112678.
  • ANSYS Fluent 18. ANSYS Fluent Tutorial Guide 18. ANSYS Fluent Tutorial Guide 18 2018; 15317: 724–746.
  • Bahrami H. Thermal optimization of PCM-based heat sink using fins: A combination of CFD, genetic algorithms , and neural networks. The Journal of Engineering 2024; (10): 1–14.
  • Chabani I., Mebarek-Oudina F. Optimized thermal storage in a heat exchanger with paraffin nano enhanced PCM and rectangular fins. Advances in Mechanical Engineering 2025; 17(5): 1–14.
  • Gallero FJG., Siles GG., Maestre IR., Blázquez JLF., Pérez-Lombard L. Performance of a simplified computational fluid dynamics model for a Phase Change Material–Water Finned Heat Exchanger Under Different Orientations. Energy Storage 2024; 6(5): 1–14.
  • Hai T., Omar I., Alizadeh A., Varshney N., Dixit S., Sultan AJ., Anqi AE., Bhatnagar S., Rajab H., Singh Sawaran Singh N. Optimization of nano-finned enclosure-shaped latent heat thermal energy storage units using CFD, RSM, and enhanced hill climbing algorithm. Scientific Reports 2025; 15(1): 1–32.
  • Harchaoui M., Bendaraa A., Charafi MM. Parametric study of thermal energy storage in shell and tube heat exchanger double tube heat exchanger with I-shaped fins. Journal of Energy Storage 2025; 108, 115094.
  • Hekmat MH., Saharkhiz S. Impact of helically coiled shell and tube on melting and solidification of PCMs in thermal energy storage systems: A three-dimensional parametric study. Journal of Energy Storage 2025; 108: 115172.
  • Izadi M., Afsharpanah F., Mohadjer A., Shobi MO., Mousavi Ajarostaghi SS., Minelli F. Performance enhancement of a shell-and-coil ice storage enclosure for air conditioning using spiral longitudinal fins: A numerical approach. Heliyon 2025; 11(4): 42786.
  • Kumar H., Yadav A., Singh G., Taneja S. A detailed review of the design parameters for augmenting the latent heat in a thermal energy storage system. Energy Harvesting and Systems 2025; 12(1).
  • Li X., Wang X., Feng G., Li J., Cui Z. Performance impact analysis of shell and tube PCM heat exchanger based on hemispherical rough elements. Journal of Building Engineering 2025; 99: 111521.
  • Mao QJ., Cao Y., Li T. Comparative investigation on the heat transfer performance of an energy storage system with a spiral tube and straight tube: An experimental approach. Science China Technological Sciences 2023; 66(1): 71–85.
  • Marzouk SA., Almehmadi FA., Aljabr A., Hamdan MO., Sharaf MA. Enhancing melting of phase change material in double tube latent heat storage system by pin fins. ASME Journal of Heat and Mass Transfer 2025; 147(7): 72401.
  • Meng F., Che C., Wu Y., Wei J., Rong J., Yang X., Li D., Yang R., Wang Z. Thermal storage performance of a shell and tube phase change heat storage unit with different thermophysical parameters of the phase change material. Processes 2024; 12(1).
  • Moghaddam MAE., Hassani Soukht Abandani MR., Hosseinzadeh K., Shafii MB., Ganji DD. Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution. Theoretical and Applied Mechanics Letters 2022; 12(2): 100332.
  • Muraleedharan Nair A., Wilson C., Kamkari B., Locke J., Jun Huang M., Griffiths P., Hewitt NJ. Advancing thermal performance in PCM-Based energy Storage: A comparative study with Fins, expanded Graphite, and combined configurations. Energy Conversion and Management 2024; 23(3): 100627.
  • Nematpour Keshteli A., Iasiello M., Langella G., Bianco N. Optimization of the thermal performance of a lobed triplex-tube solar thermal storage system equipped with a phase change material. Heliyon 2024; 10(16): 36105.
  • Öztop HF., Kiyak B., Biswas N., Selimefendigil F., Coşanay H. Effects of cooler shape and position on solidification of phase change material in a cavity. Journal of the Taiwan Institute of Chemical Engineers 2024; 163(3).
  • Perumalsamy J., Punniakodi SBM., Selvam C., Senthil R. Enhancing phase change characteristics of hybrid nanocomposites for latent heat thermal energy storage. Journal of Composites Science 2025; 9(3): 1–21.
  • Rendall J., Tamraparni A., Shen Z., Hun D., Shrestha., S. Low-cost fin-tube heat exchanger design for building thermal energy storage using phase change material. International Communications in Heat and Mass Transfer 2024; 159(PB): 108098.
  • Rogowski M., Fabrykiewicz M., Andrzejczyk R. Melting in shell-and-tube and shell-and-coil thermal energy storage: analytical correlation for melting fraction. Energies 2025; 18(11): 1–21.
  • Saha SC., Ahmed SF., Ahmed B., Mehnaz T., Musharrat A. A review of phase change materials in multi-designed tubes and buildings: Testing methods, applications, and heat transfer enhancement. Journal of Energy Storage 2023; 63, 106990.
  • Said Z., Mwesigye A., Syam Sundar L., Tiwari AK., Balasubramanian K., Ali HM., Bellos E., Gim C., Ahmed MS., Hwang JY. Sustainable Thermal Solutions: Enhancing Heat Transfer with Turbulators and Nanofluids. Advanced Energy and Sustainability Research 2025; 2400335.
  • Shen G., Wang X., Yu J., Bin Y., Zhong S., Yang S., Wang J. Experimental investigation of thermal performance of vertical multitube cylindrical latent heat thermal energy storage systems. Environmental Science and Pollution Research 2024; 31(34): 46447–46461.
  • Younis O., Mozaffari M., Ahmed A., Ghalambaz M. Improvement of latent heat thermal energy storage rate for domestic solar water heater systems using anisotropic layers of metal foam. Buildings 2024; 14(8).
  • Yousefi E., Ramasamy D., Kadirgama K., Talele V., Najafi H., Olyaei M., Miljkovic N., Panchal S. Electrochemical-thermal modeling of phase change material battery thermal management systems: investigating mesh types for accurate simulations. International Journal of Heat and Mass Transfer 2025; 247(April): 127107. Zaytoun MM., El-Bashouty MM., Sorour MM., Alnakeeb MA. Heat transfer characteristics of PCM inside a modified design of shell and tube latent heat thermal energy storage unit. Case Studies in Thermal Engineering 2023; 49(July): 103372.
  • Zhang W., Pan L., Ding D., Zhang R., Bai J., Du Q. Progress in the study of enhanced heat exchange in phase change heat storage devices. ACS Omega 2023; 8(25): 22331–22344.

Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations

Yıl 2026, Cilt: 9 Sayı: 1, 416 - 438, 14.01.2026
https://doi.org/10.47495/okufbed.1763191

Öz

This study presents a three-dimensional numerical investigation on the melting performance and energy storage characteristics of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with RT35HC phase change material (PCM). Five different heat transfer fluid (HTF) tube configurations—Straight, 1P-1T, 1P-2T, 2P-1T, and 2P-2T—were analysed under both horizontal and vertical orientations. In single-tube designs, the HTF surface area was equalized to evaluate the effect of geometry on the melting process independently. In multi-tube/multi-turn helical designs, the combined influence of increased surface area and reduced PCM volume was considered. Performance evaluation was carried out in terms of liquid fraction, stored energy, average heat flux, and average Nusselt number. The analyses revealed that, in vertical orientation, the 2P-2T configuration stored 122.6% more energy than the Straight configuration, with a significantly shorter melting duration. These findings emphasize the critical role of tube geometry and system orientation in influencing melting dynamics and energy storage efficiency, providing valuable guidance for LHTES system design optimization.

Kaynakça

  • Abdellatif HE., Belaadi A., Arshad A., Chai BX., Ghernaout D. Enhancing thermal energy storage system efficiency: Geometric analysis of phase change material integrated wedge-shaped heat exchangers. Applied Thermal Engineering 2025; 262: 125268.
  • Abdollahi SA., Faramarzi S., Azizi Gheshlaghchaei B., Amin SS. Heidarshenas MH., Majidi H., Talati F. Development of freezing process of phase change materials in cylindrical thermal energy storage tanks with various fin configurations. Scientific Reports 2025; 15(1).
  • Ahmed S., Abderrahmane A., Saeed AM., Guedri K., Mourad A., Younes O., Botmart T., Shah NA. Melting enhancement of PCM in a finned tube latent heat thermal energy storage. Scientific Reports 2022; 12(1): 1–14.
  • Ali AM., Bagdanavicius A., Barbour ER., Pottie DL., Garvey S., Rouse J., Baniamerian Z. Improving the performance of a shell and tube latent heat thermal energy storage through modifications of heat transfer pipes: A comprehensive investigation on various configurations. Journal of Energy Storage 2024; 96: 112678.
  • ANSYS Fluent 18. ANSYS Fluent Tutorial Guide 18. ANSYS Fluent Tutorial Guide 18 2018; 15317: 724–746.
  • Bahrami H. Thermal optimization of PCM-based heat sink using fins: A combination of CFD, genetic algorithms , and neural networks. The Journal of Engineering 2024; (10): 1–14.
  • Chabani I., Mebarek-Oudina F. Optimized thermal storage in a heat exchanger with paraffin nano enhanced PCM and rectangular fins. Advances in Mechanical Engineering 2025; 17(5): 1–14.
  • Gallero FJG., Siles GG., Maestre IR., Blázquez JLF., Pérez-Lombard L. Performance of a simplified computational fluid dynamics model for a Phase Change Material–Water Finned Heat Exchanger Under Different Orientations. Energy Storage 2024; 6(5): 1–14.
  • Hai T., Omar I., Alizadeh A., Varshney N., Dixit S., Sultan AJ., Anqi AE., Bhatnagar S., Rajab H., Singh Sawaran Singh N. Optimization of nano-finned enclosure-shaped latent heat thermal energy storage units using CFD, RSM, and enhanced hill climbing algorithm. Scientific Reports 2025; 15(1): 1–32.
  • Harchaoui M., Bendaraa A., Charafi MM. Parametric study of thermal energy storage in shell and tube heat exchanger double tube heat exchanger with I-shaped fins. Journal of Energy Storage 2025; 108, 115094.
  • Hekmat MH., Saharkhiz S. Impact of helically coiled shell and tube on melting and solidification of PCMs in thermal energy storage systems: A three-dimensional parametric study. Journal of Energy Storage 2025; 108: 115172.
  • Izadi M., Afsharpanah F., Mohadjer A., Shobi MO., Mousavi Ajarostaghi SS., Minelli F. Performance enhancement of a shell-and-coil ice storage enclosure for air conditioning using spiral longitudinal fins: A numerical approach. Heliyon 2025; 11(4): 42786.
  • Kumar H., Yadav A., Singh G., Taneja S. A detailed review of the design parameters for augmenting the latent heat in a thermal energy storage system. Energy Harvesting and Systems 2025; 12(1).
  • Li X., Wang X., Feng G., Li J., Cui Z. Performance impact analysis of shell and tube PCM heat exchanger based on hemispherical rough elements. Journal of Building Engineering 2025; 99: 111521.
  • Mao QJ., Cao Y., Li T. Comparative investigation on the heat transfer performance of an energy storage system with a spiral tube and straight tube: An experimental approach. Science China Technological Sciences 2023; 66(1): 71–85.
  • Marzouk SA., Almehmadi FA., Aljabr A., Hamdan MO., Sharaf MA. Enhancing melting of phase change material in double tube latent heat storage system by pin fins. ASME Journal of Heat and Mass Transfer 2025; 147(7): 72401.
  • Meng F., Che C., Wu Y., Wei J., Rong J., Yang X., Li D., Yang R., Wang Z. Thermal storage performance of a shell and tube phase change heat storage unit with different thermophysical parameters of the phase change material. Processes 2024; 12(1).
  • Moghaddam MAE., Hassani Soukht Abandani MR., Hosseinzadeh K., Shafii MB., Ganji DD. Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution. Theoretical and Applied Mechanics Letters 2022; 12(2): 100332.
  • Muraleedharan Nair A., Wilson C., Kamkari B., Locke J., Jun Huang M., Griffiths P., Hewitt NJ. Advancing thermal performance in PCM-Based energy Storage: A comparative study with Fins, expanded Graphite, and combined configurations. Energy Conversion and Management 2024; 23(3): 100627.
  • Nematpour Keshteli A., Iasiello M., Langella G., Bianco N. Optimization of the thermal performance of a lobed triplex-tube solar thermal storage system equipped with a phase change material. Heliyon 2024; 10(16): 36105.
  • Öztop HF., Kiyak B., Biswas N., Selimefendigil F., Coşanay H. Effects of cooler shape and position on solidification of phase change material in a cavity. Journal of the Taiwan Institute of Chemical Engineers 2024; 163(3).
  • Perumalsamy J., Punniakodi SBM., Selvam C., Senthil R. Enhancing phase change characteristics of hybrid nanocomposites for latent heat thermal energy storage. Journal of Composites Science 2025; 9(3): 1–21.
  • Rendall J., Tamraparni A., Shen Z., Hun D., Shrestha., S. Low-cost fin-tube heat exchanger design for building thermal energy storage using phase change material. International Communications in Heat and Mass Transfer 2024; 159(PB): 108098.
  • Rogowski M., Fabrykiewicz M., Andrzejczyk R. Melting in shell-and-tube and shell-and-coil thermal energy storage: analytical correlation for melting fraction. Energies 2025; 18(11): 1–21.
  • Saha SC., Ahmed SF., Ahmed B., Mehnaz T., Musharrat A. A review of phase change materials in multi-designed tubes and buildings: Testing methods, applications, and heat transfer enhancement. Journal of Energy Storage 2023; 63, 106990.
  • Said Z., Mwesigye A., Syam Sundar L., Tiwari AK., Balasubramanian K., Ali HM., Bellos E., Gim C., Ahmed MS., Hwang JY. Sustainable Thermal Solutions: Enhancing Heat Transfer with Turbulators and Nanofluids. Advanced Energy and Sustainability Research 2025; 2400335.
  • Shen G., Wang X., Yu J., Bin Y., Zhong S., Yang S., Wang J. Experimental investigation of thermal performance of vertical multitube cylindrical latent heat thermal energy storage systems. Environmental Science and Pollution Research 2024; 31(34): 46447–46461.
  • Younis O., Mozaffari M., Ahmed A., Ghalambaz M. Improvement of latent heat thermal energy storage rate for domestic solar water heater systems using anisotropic layers of metal foam. Buildings 2024; 14(8).
  • Yousefi E., Ramasamy D., Kadirgama K., Talele V., Najafi H., Olyaei M., Miljkovic N., Panchal S. Electrochemical-thermal modeling of phase change material battery thermal management systems: investigating mesh types for accurate simulations. International Journal of Heat and Mass Transfer 2025; 247(April): 127107. Zaytoun MM., El-Bashouty MM., Sorour MM., Alnakeeb MA. Heat transfer characteristics of PCM inside a modified design of shell and tube latent heat thermal energy storage unit. Case Studies in Thermal Engineering 2023; 49(July): 103372.
  • Zhang W., Pan L., Ding D., Zhang R., Bai J., Du Q. Progress in the study of enhanced heat exchange in phase change heat storage devices. ACS Omega 2023; 8(25): 22331–22344.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Araştırma Makalesi
Yazarlar

Burak Kıyak 0000-0001-9088-9154

Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 14 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 9 Sayı: 1

Kaynak Göster

APA Kıyak, B. (2026). Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 416-438. https://doi.org/10.47495/okufbed.1763191
AMA Kıyak B. Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Ocak 2026;9(1):416-438. doi:10.47495/okufbed.1763191
Chicago Kıyak, Burak. “Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9, sy. 1 (Ocak 2026): 416-38. https://doi.org/10.47495/okufbed.1763191.
EndNote Kıyak B (01 Ocak 2026) Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 1 416–438.
IEEE B. Kıyak, “Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, sy. 1, ss. 416–438, 2026, doi: 10.47495/okufbed.1763191.
ISNAD Kıyak, Burak. “Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9/1 (Ocak2026), 416-438. https://doi.org/10.47495/okufbed.1763191.
JAMA Kıyak B. Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;9:416–438.
MLA Kıyak, Burak. “Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, sy. 1, 2026, ss. 416-38, doi:10.47495/okufbed.1763191.
Vancouver Kıyak B. Performance Assessment of Phase Change Material in Thermal Energy Storage Systems under Different Heat Transfer Fluid Pipe Configurations. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;9(1):416-38.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.