Araştırma Makalesi
BibTex RIS Kaynak Göster

Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 5 Sayı: 2, 861 - 870, 18.07.2022
https://doi.org/10.47495/okufbed.1006242

Öz

Çalışmada Ni2ScAl full Heusler bileşiğinin mekanik ve termodinamik özellikleri araştırılmıştır. Bu amaçla, önce yapısal optimizasyon yapılmış akabinde elastik sabitler hesaplanmıştır. Hesaplanan elastik sabitlerin kararlılık kriterlerini sağladığından dolayı elastik modülü hesaplanmış ve anizotropisi incelenmiştir. Debye sıcaklığı, Gruneisen sabiti ve termal iletkenlikleri tahmin edilmiştir. Yapılan hesaplamalar sonucunda Ni2ScAl bileşiği sert olmayıp, anizotrop ve sünek özellik göstermesi beklenmektedir. Küçük minimum termal iletkenliğe sahip olmasından dolayı, ısıl yalıtkan olarak kullanılabilir.

Kaynakça

  • Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arab, F., Sahraoui, F. A., Haddadi, K., Bouhemadou, A., & Louail, L. (2016). Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study. Phase Transitions, 89(5), 480–513. https://doi.org/10.1080/01411594.2015.1089574
  • Benndorf, C., Niehaus, O., Eckert, H., & Janka, O. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc(T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc(Pd0.5Au0.5)2Al. Zeitschrift Für Anorganische Und Allgemeine Chemie, 641(2), 168–175. https://doi.org/10.1002/ZAAC.201400509
  • Benndorf, C., Niehaus, O., … H. E.-… für anorganische und, & 2015, undefined. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc (T0. 5T′ 0.5) 2Al (T= T′= Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc (Pd0. 5Au0. 5). Wiley Online Library, 641(2), 168–175. https://doi.org/10.1002/zaac.201400509
  • Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160–172. https://doi.org/10.1017/S0305004100017138
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek & S. A. Mersol, Eds.; 1st editio). Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C. K., van der Zwaag, S., Plata, J. J., Toher, C., Curtarolo, S., Ceder, G., Persson, K. A., & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2. https://doi.org/10.1038/SDATA.2015.9
  • Dwight, A. E., & Kimball, C. W. (1987). ScT2X and LnT2X compounds with the MnCu2al-type structure. Journal of the Less Common Metals, 127(C), 179–182. https://doi.org/10.1016/0022-5088(87)90376-6
  • Everhart, W., & Newkirk, J. (2019). Mechanical properties of Heusler alloys. Heliyon, 5(5), e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., & Surucu, G. (2019). Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29), 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Kou, J., Zhou, Y., Li, K.-L., & Gan, L.-H. (2020). The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals. Computational Materials Science, 182, 109758. https://doi.org/10.1016/j.commatsci.2020.109758
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. Oxford University Press.
  • Okoye, C. M. I. (2014). Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds. Computational Materials Science, 92, 141–148. https://doi.org/10.1016/j.commatsci.2014.05.016
  • Özer, T. (2020a). Study of first principles on anisotropy and elastic constants of yal<inf>3</inf> compound. Canadian Journal of Physics, 98(4). https://doi.org/10.1139/cjp-2018-0448
  • Özer, T. (2020b). Yüksek Basınç Altında SbSeI’nin Elektronik Özelliklerin İlk İlk Hesaplamalar İle İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 2021(1), 64–72. https://doi.org/10.7240/jeps.717399
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, Eds.; pp. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., & Öztürk, A. İ. (2019). Theoretical Investigation of The Effect of Pressure on Structural Parameters of Ferroelectric SbSI Crystal. In B. Kurt, C. Çarboğa, Z. B. Öztürk, & N. Küçükdeveci (Eds.), IMSTEC 2019 (pp. 176–179).
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E. (1973). Elastic constants and their measurement. McGraw-Hill Book Company. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=6480
  • Surucu, G. (2018). Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds. Materials Chemistry and Physics, 203, 106–117. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.050
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. In Lehrbuch der Kristallphysik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-15884-4
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., & Han, P. (2017). The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114, 398–403. https://doi.org/10.1016/J.MATDES.2016.11.005
  • William D. Callister, Jr. , & Rethwisch, D. G. (2011). Materials Science and Engineering (8th edn). Wiley.
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022

Investigation of Mechanical and Thermodynamic Properties of Ni2ScAl Compound by Ab initio Methods

Yıl 2022, Cilt: 5 Sayı: 2, 861 - 870, 18.07.2022
https://doi.org/10.47495/okufbed.1006242

Öz

In this study, the mechanical and thermodynamic properties of Ni2ScAl full Heusler compound were investigated. For this purpose, first structural optimization was made, and then elastic constants were calculated. Since the calculated elastic constants meet the stability criteria, the elastic modulus was calculated, and its anisotropy was examined. Debye temperature, Gruneisen constant and thermal conductivities were estimated. As a result of the calculations, it is expected that the Ni2ScAl compound is not hard but will show anisotropic and ductile properties. It can be used as a thermal insulator due to its small minimum thermal conductivity.

Kaynakça

  • Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arab, F., Sahraoui, F. A., Haddadi, K., Bouhemadou, A., & Louail, L. (2016). Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study. Phase Transitions, 89(5), 480–513. https://doi.org/10.1080/01411594.2015.1089574
  • Benndorf, C., Niehaus, O., Eckert, H., & Janka, O. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc(T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc(Pd0.5Au0.5)2Al. Zeitschrift Für Anorganische Und Allgemeine Chemie, 641(2), 168–175. https://doi.org/10.1002/ZAAC.201400509
  • Benndorf, C., Niehaus, O., … H. E.-… für anorganische und, & 2015, undefined. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc (T0. 5T′ 0.5) 2Al (T= T′= Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc (Pd0. 5Au0. 5). Wiley Online Library, 641(2), 168–175. https://doi.org/10.1002/zaac.201400509
  • Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160–172. https://doi.org/10.1017/S0305004100017138
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek & S. A. Mersol, Eds.; 1st editio). Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C. K., van der Zwaag, S., Plata, J. J., Toher, C., Curtarolo, S., Ceder, G., Persson, K. A., & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2. https://doi.org/10.1038/SDATA.2015.9
  • Dwight, A. E., & Kimball, C. W. (1987). ScT2X and LnT2X compounds with the MnCu2al-type structure. Journal of the Less Common Metals, 127(C), 179–182. https://doi.org/10.1016/0022-5088(87)90376-6
  • Everhart, W., & Newkirk, J. (2019). Mechanical properties of Heusler alloys. Heliyon, 5(5), e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., & Surucu, G. (2019). Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29), 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Kou, J., Zhou, Y., Li, K.-L., & Gan, L.-H. (2020). The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals. Computational Materials Science, 182, 109758. https://doi.org/10.1016/j.commatsci.2020.109758
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. Oxford University Press.
  • Okoye, C. M. I. (2014). Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds. Computational Materials Science, 92, 141–148. https://doi.org/10.1016/j.commatsci.2014.05.016
  • Özer, T. (2020a). Study of first principles on anisotropy and elastic constants of yal<inf>3</inf> compound. Canadian Journal of Physics, 98(4). https://doi.org/10.1139/cjp-2018-0448
  • Özer, T. (2020b). Yüksek Basınç Altında SbSeI’nin Elektronik Özelliklerin İlk İlk Hesaplamalar İle İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 2021(1), 64–72. https://doi.org/10.7240/jeps.717399
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, Eds.; pp. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., & Öztürk, A. İ. (2019). Theoretical Investigation of The Effect of Pressure on Structural Parameters of Ferroelectric SbSI Crystal. In B. Kurt, C. Çarboğa, Z. B. Öztürk, & N. Küçükdeveci (Eds.), IMSTEC 2019 (pp. 176–179).
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E. (1973). Elastic constants and their measurement. McGraw-Hill Book Company. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=6480
  • Surucu, G. (2018). Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds. Materials Chemistry and Physics, 203, 106–117. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.050
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. In Lehrbuch der Kristallphysik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-15884-4
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., & Han, P. (2017). The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114, 398–403. https://doi.org/10.1016/J.MATDES.2016.11.005
  • William D. Callister, Jr. , & Rethwisch, D. G. (2011). Materials Science and Engineering (8th edn). Wiley.
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Tahsin Özer 0000-0003-0344-7118

Nihat Arıkan Bu kişi benim 0000-0001-8028-3132

Yayımlanma Tarihi 18 Temmuz 2022
Gönderilme Tarihi 8 Ekim 2021
Kabul Tarihi 14 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Özer, T., & Arıkan, N. (2022). Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 861-870. https://doi.org/10.47495/okufbed.1006242
AMA Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Temmuz 2022;5(2):861-870. doi:10.47495/okufbed.1006242
Chicago Özer, Tahsin, ve Nihat Arıkan. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, sy. 2 (Temmuz 2022): 861-70. https://doi.org/10.47495/okufbed.1006242.
EndNote Özer T, Arıkan N (01 Temmuz 2022) Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 861–870.
IEEE T. Özer ve N. Arıkan, “Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 5, sy. 2, ss. 861–870, 2022, doi: 10.47495/okufbed.1006242.
ISNAD Özer, Tahsin - Arıkan, Nihat. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (Temmuz 2022), 861-870. https://doi.org/10.47495/okufbed.1006242.
JAMA Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:861–870.
MLA Özer, Tahsin ve Nihat Arıkan. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 5, sy. 2, 2022, ss. 861-70, doi:10.47495/okufbed.1006242.
Vancouver Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):861-70.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.