Araştırma Makalesi
BibTex RIS Kaynak Göster

Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri

Yıl 2022, Cilt: 5 Sayı: 2, 1008 - 1021, 18.07.2022
https://doi.org/10.47495/okufbed.1073266

Öz

Bu çalışmada dikey düz bir plaka yüzeyine çarpan jet akışı için nozul uzunluğunun ısı transferi ve akış alanı üzerindeki etkileri sayısal olarak araştırılmıştır. Çalışmanın temel amacı, sabit ısı akısına (q=1500 W/m2) sahip bir yüzeydeki ısı transferini etkileyen nozul uzunluğuna bağlı jet çarpmasının akış özellikleri üzerindeki etkilerini göstermektir. Analizler bir Hesaplamalı Akışkanlar Dinamiği (HAD) uygulaması olan Ansys/Fluent kullanılarak elde edilmiştir. Nozul çıkışındaki akış, tam gelişmiş bir hız profiline sahiptir. Analizler, nozul ile plaka yüzeyi arasında 0,5; 1 ve 1,5 L/W boyutsuz mesafeleri ile 1300, 2600 ve 4000 jet Reynolds sayısı (Re) için gerçekleştirilmiştir. Sonuçlar, durma noktası bölgesinde azalan nozul mesafesi ile yerel Nusselt sayılarının arttığını göstermektedir. Bu durum, ısı transferinin artmasıyla sonuçlanan daha düşük nozul mesafesi çapı ile jet momentumu ve türbülans yoğunluğu seviyesindeki bir artışa ve ısıl sınır tabaka incelmesine bağlanabilir. Ayrıca zamana bağlı yapılan çözümlemede, hız ve sıcaklık konturları verilmiş, Nusselt sayısı ile sıcaklık değişim grafikleri sunularak modeller birbirleriyle karşılaştırılmıştır.

Kaynakça

  • Aminzadeha M., Khadema J., Zolfagharia S.A., Omidvarb A. Numerical study of nozzle width effect on cooling performance of a turbulent impinging oscillating jet in a heated cavity. International Communications in Heat and Mass Transfer 2020; 118: 104899.
  • Chu W., Huang K., Amer M., Wang C. Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules. ASME. J. Heat Transfer 2019; 141(10): 102201.
  • Culun P., Celik N., Pihtili K., Effects of design parameters on a multi jet impinging heat transfer. Alexandria Engineering Journal 2018; 57(4): 4255-4266.
  • Çelik N. Effects of dimples’ arrangement style of rough surface and jet geometry on impinging jet heat transfer. Heat Mass Transfer 2020; 56: 339–354.
  • Dewan A., Dutta R., Srinivasan B. Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer, Heat Transfer Engineering 2012; 33(4-5): 447-460.
  • Garimella S.V., Nenaydykh B. Nozzle-geometry effects in liquid jet impingement heat transfer. Int. J. Heat Mass Transfer 1996; 39 (14): 2915-2923.
  • Han B., Goldstein, R. J. Jet-Impingement Heat Transfer in Gas Turbine Systems, Annals of the New York Academy of Science 2001; 934: 147–161.
  • Jambunathan K., Lai E., Moss M. A., and Button B. L. A Review of Heat Transfer Data for Single Circular Jet Impingement. International Journal of Heat and Fluid Flow 1992; 13: 106–115.
  • Javadi A. Numerical study of an impinging jet in cross-flow within and without influence of vortex generator structures on heat transfer. Heat Mass Transfer 2020; 56: 797–810.
  • Kaya H. İkili Çarpan Jet ile Soğutulan Sıcak Plakanın Yüzey Şeklinin Isı Transferine Etkisinin Sayısal Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021; 9: 152-163.
  • Krueger J., Uddin N., Ali M. Numerical study of heat transfer by impinging jet with inlet temperature-field excitations using a pseudo-sinusoidal function. Numerical Heat Transfer, Part A: Applications 2019; 76 (9): 724-736.
  • Lak A., Çalışır T., Başkaya Ş. Flow and heat transfer characteristics of inclined jet impingement on a flat plate. Politeknik Dergisi 2020, 23(3): 697-706.
  • Martin, H. Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces. Advances in Heat Transfer 1977; 13: 1–60.
  • Öztürk M.S., Demircan T. Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University 2022; 37(1): 57-74.
  • Ravanji A., Zargarabadi M.R. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface. International Journal of Heat and Mass Transfer 2020; 152: 119532.
  • Sarkar A., Nitin N., Karwe M.V., Singh R.P. Fluid flow and heat transfer in air jet impingement in food processing. J. Food Sci. 2004; 69(4): 113–122.
  • Shukla A.K., Dewan A., Flow and thermal characteristics of jet impingement on a flat plate for small nozzle to plate spacing using LES. International Journal of Thermal Sciences 2019, 145.
  • Viskanta R. Nusselt-Reynolds Prize Paper - Heat Transfer to Impinging Isothermal Gas and Flame Jets. Exp. Therm. Fluid Sci. 1993; 6: 111–134.
  • Wae-Hayee M., Tekasakul P., Eiamsa-ard S., Nuntadusit C. Effect of cross-flow velocity on flow and heat transfer characteristics of impinging jet with low jet-to-plate distance. Journal of Mechanical Science and Technology 2014; 28 (6): 2909-2917.
  • Xing Y., Spring S., Weigand B. Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets. ASME. J. Heat Transfer 2010; 132(9): 092201.
  • Yan W.M., Mei S.C., Liu H.C., Soong C.Y., Yang W.J., Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique. International Journal of Heat and Mass Transfer 2004; 47 (24): 5235-5245.

The Effects of Nozzle Distance on Impinging Jet Heat Transfer and Fluid Flow

Yıl 2022, Cilt: 5 Sayı: 2, 1008 - 1021, 18.07.2022
https://doi.org/10.47495/okufbed.1073266

Öz

In this study, the effects of nozzle length on heat transfer and flow area for jet flow impinging on a vertical flat plate surface were investigated numerically. The main purpose of the study is to show the effects of jet impingement on the flow properties, depending on the nozzle length, which affects the heat transfer on a surface with a constant heat flux (q"=1500 W/m2). Analyzes were obtained using Ansys/Fluent, a Computational Fluid Dynamics (CFD) application. The flow at the nozzle outlet has a fully developed velocity profile. Analyzes were performed for 1300, 2600 and 4000 jet Reynolds numbers (Re) with dimensionless distances of 0.5, 1 and 1.5 L/W between the nozzle and the plate surface. The results show that local Nusselt numbers increase with decreasing nozzle distance in the stagnation point region. This can be attributed to an increase in jet momentum, turbulence intensity and thermal boundary layer thinning with the smaller nozzle distance diameter resulting in increased heat transfer. In addition, time-dependent velocity and temperature contours are given, Nusselt number and temperature change graphs are presented along the vertical plate and the models are compared with each other. 

Kaynakça

  • Aminzadeha M., Khadema J., Zolfagharia S.A., Omidvarb A. Numerical study of nozzle width effect on cooling performance of a turbulent impinging oscillating jet in a heated cavity. International Communications in Heat and Mass Transfer 2020; 118: 104899.
  • Chu W., Huang K., Amer M., Wang C. Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules. ASME. J. Heat Transfer 2019; 141(10): 102201.
  • Culun P., Celik N., Pihtili K., Effects of design parameters on a multi jet impinging heat transfer. Alexandria Engineering Journal 2018; 57(4): 4255-4266.
  • Çelik N. Effects of dimples’ arrangement style of rough surface and jet geometry on impinging jet heat transfer. Heat Mass Transfer 2020; 56: 339–354.
  • Dewan A., Dutta R., Srinivasan B. Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer, Heat Transfer Engineering 2012; 33(4-5): 447-460.
  • Garimella S.V., Nenaydykh B. Nozzle-geometry effects in liquid jet impingement heat transfer. Int. J. Heat Mass Transfer 1996; 39 (14): 2915-2923.
  • Han B., Goldstein, R. J. Jet-Impingement Heat Transfer in Gas Turbine Systems, Annals of the New York Academy of Science 2001; 934: 147–161.
  • Jambunathan K., Lai E., Moss M. A., and Button B. L. A Review of Heat Transfer Data for Single Circular Jet Impingement. International Journal of Heat and Fluid Flow 1992; 13: 106–115.
  • Javadi A. Numerical study of an impinging jet in cross-flow within and without influence of vortex generator structures on heat transfer. Heat Mass Transfer 2020; 56: 797–810.
  • Kaya H. İkili Çarpan Jet ile Soğutulan Sıcak Plakanın Yüzey Şeklinin Isı Transferine Etkisinin Sayısal Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021; 9: 152-163.
  • Krueger J., Uddin N., Ali M. Numerical study of heat transfer by impinging jet with inlet temperature-field excitations using a pseudo-sinusoidal function. Numerical Heat Transfer, Part A: Applications 2019; 76 (9): 724-736.
  • Lak A., Çalışır T., Başkaya Ş. Flow and heat transfer characteristics of inclined jet impingement on a flat plate. Politeknik Dergisi 2020, 23(3): 697-706.
  • Martin, H. Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces. Advances in Heat Transfer 1977; 13: 1–60.
  • Öztürk M.S., Demircan T. Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University 2022; 37(1): 57-74.
  • Ravanji A., Zargarabadi M.R. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface. International Journal of Heat and Mass Transfer 2020; 152: 119532.
  • Sarkar A., Nitin N., Karwe M.V., Singh R.P. Fluid flow and heat transfer in air jet impingement in food processing. J. Food Sci. 2004; 69(4): 113–122.
  • Shukla A.K., Dewan A., Flow and thermal characteristics of jet impingement on a flat plate for small nozzle to plate spacing using LES. International Journal of Thermal Sciences 2019, 145.
  • Viskanta R. Nusselt-Reynolds Prize Paper - Heat Transfer to Impinging Isothermal Gas and Flame Jets. Exp. Therm. Fluid Sci. 1993; 6: 111–134.
  • Wae-Hayee M., Tekasakul P., Eiamsa-ard S., Nuntadusit C. Effect of cross-flow velocity on flow and heat transfer characteristics of impinging jet with low jet-to-plate distance. Journal of Mechanical Science and Technology 2014; 28 (6): 2909-2917.
  • Xing Y., Spring S., Weigand B. Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets. ASME. J. Heat Transfer 2010; 132(9): 092201.
  • Yan W.M., Mei S.C., Liu H.C., Soong C.Y., Yang W.J., Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique. International Journal of Heat and Mass Transfer 2004; 47 (24): 5235-5245.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Ferhat Koca 0000-0001-8849-5295

Mustafa Zabun 0000-0003-0420-4134

Yayımlanma Tarihi 18 Temmuz 2022
Gönderilme Tarihi 14 Şubat 2022
Kabul Tarihi 18 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Koca, F., & Zabun, M. (2022). Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 1008-1021. https://doi.org/10.47495/okufbed.1073266
AMA Koca F, Zabun M. Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Temmuz 2022;5(2):1008-1021. doi:10.47495/okufbed.1073266
Chicago Koca, Ferhat, ve Mustafa Zabun. “Nozul Mesafesinin Çarpan Jet Isı Transferi Ve Akışkan Akışı Üzerindeki Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, sy. 2 (Temmuz 2022): 1008-21. https://doi.org/10.47495/okufbed.1073266.
EndNote Koca F, Zabun M (01 Temmuz 2022) Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 1008–1021.
IEEE F. Koca ve M. Zabun, “Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 5, sy. 2, ss. 1008–1021, 2022, doi: 10.47495/okufbed.1073266.
ISNAD Koca, Ferhat - Zabun, Mustafa. “Nozul Mesafesinin Çarpan Jet Isı Transferi Ve Akışkan Akışı Üzerindeki Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (Temmuz 2022), 1008-1021. https://doi.org/10.47495/okufbed.1073266.
JAMA Koca F, Zabun M. Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:1008–1021.
MLA Koca, Ferhat ve Mustafa Zabun. “Nozul Mesafesinin Çarpan Jet Isı Transferi Ve Akışkan Akışı Üzerindeki Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 5, sy. 2, 2022, ss. 1008-21, doi:10.47495/okufbed.1073266.
Vancouver Koca F, Zabun M. Nozul Mesafesinin Çarpan Jet Isı Transferi ve Akışkan Akışı Üzerindeki Etkileri. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):1008-21.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.