M, ρ, and M/ρ Monoidleri için Sonlu Tam Yeniden Yazma Sistemleri
Yıl 2023,
Cilt: 6 Sayı: 1, 720 - 725, 10.03.2023
Aykut Emniyet
,
Basri Çalışkan
Öz
𝑀 bir monoid ve 𝜌, 𝑀 üzerinde kongrüans olacak biçimde bir denklik bağıntısı olsun. Böylece, 𝜌, 𝑀×𝑀 monoidlerinin direkt çarpımının bir alt monoidi ve 𝑀/𝜌={𝑥𝜌:𝑥∈𝑀} kümesi (𝑥𝜌)(𝑦𝜌)=(𝑥𝑦)𝜌 işlemi ile bir monoid olur. Öncelikle, bir giriş lemması ifade ve ispat edilerek konu ile ilgili bir örnek verilmektedir. Daha sonra, eğer 𝜌 bir sonlu tam yeniden yazma sistemi ile takdim edilebilir ise, 𝑀’nin de bir sonlu tam yeniden yazma sistemi ile takdim edilebilir olduğu gösterilmektedir. Ana sonucun son kısmında, eğer 𝜌 bir sonlu tam yeniden yazma sistemi ile takdim edilebilir ise, 𝑀/𝜌 monoidinin de bir sonlu tam yeniden yazma sistemi ile takdim edilebilir olduğu gösterilmektedir.
Kaynakça
-
Ayık G., Ayık H., Ünlü Y. Presentations for S and S/ρ from a given presentation ρ, Semigroup Forum, 2005; 70: 146-149.
-
Book R.V., Otto F. String-Rewriting Systems, Springer-Verlag, New York, 1993.
-
Cetinalp, E. K., Karpuz, E. G. Crossed product of infinite groups and complete rewriting systems, Turkish Journal of Mathematics, 2021; 45(1): 410-422.
-
Dehn M. Tiber unendliche diskontinuierliche Gruppen, Mathematische Annalen, 1911; 71: 116-144.
-
Gray R., Malheiro A., Finite complete rewriting systems for regular semigroups, Theoretical Computer Science, 2011; 412: 654-661.
-
Howie J. M. Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
-
Kuyucu F. Relations between Ranks of Certain Semigroups, Selçuk J. Appl. Math., 2011; 12(1): 123-126.
-
Özer, B., Yüksek, A. Finite Complete Rewriting Systems For Matrix Semigroup Presentations, International Journal of Algebra, 2016; 10: 497-511.
-
Pride S. J. Subgroups of Finite Index in Groups with Finite Complete Rewriting Systems, Proceedings of the Edinburgh Mathematical Society, 2000; 43(1): 177-183.
-
Sims C.C. Computation with Finitely Presentations Groups, Cambridge University Press, Cambridge, 1994.
-
Squier C., Otto F., Kobayashi Y. A finiteness condition for rewriting systems, Theoretical Computer Science, 1994; 131: 271-294.
-
Wang J. Finite Derivation Type for Semigroups and Congruences, Semigroup Forum, 2007; 75: 388-392.
-
Wang J. Finite complete rewriting systems and finite derivation type for small extensions of monoids, Journal of Algebra, 1998; 204: 493-503.
-
Wong K.B., Wong P.C. On finite complete rewriting systems and large subsemigroups, Journal of Algebra, 2010; 345: 242-256.
Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ
Yıl 2023,
Cilt: 6 Sayı: 1, 720 - 725, 10.03.2023
Aykut Emniyet
,
Basri Çalışkan
Öz
Let 𝑀 be a monoid and 𝜌 be an equivalence relation on 𝑀 such that 𝜌 is a congruence. So, 𝜌 is a submonoid of the direct product of monoids 𝑀×𝑀, and 𝑀/𝜌={𝑥𝜌:𝑥∈𝑀} is a monoid with the operation (𝑥𝜌)(𝑦𝜌)=(𝑥𝑦)𝜌. First, an introductory lemma is proposed, proved and a relevant example is given. Then, it is shown that if 𝜌 can be presented by a finite complete rewriting system, then so can 𝑀. As the final part of the main result, it is proved that if 𝜌 can be presented by a finite complete rewriting system, then so can 𝑀/𝜌.
Kaynakça
-
Ayık G., Ayık H., Ünlü Y. Presentations for S and S/ρ from a given presentation ρ, Semigroup Forum, 2005; 70: 146-149.
-
Book R.V., Otto F. String-Rewriting Systems, Springer-Verlag, New York, 1993.
-
Cetinalp, E. K., Karpuz, E. G. Crossed product of infinite groups and complete rewriting systems, Turkish Journal of Mathematics, 2021; 45(1): 410-422.
-
Dehn M. Tiber unendliche diskontinuierliche Gruppen, Mathematische Annalen, 1911; 71: 116-144.
-
Gray R., Malheiro A., Finite complete rewriting systems for regular semigroups, Theoretical Computer Science, 2011; 412: 654-661.
-
Howie J. M. Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
-
Kuyucu F. Relations between Ranks of Certain Semigroups, Selçuk J. Appl. Math., 2011; 12(1): 123-126.
-
Özer, B., Yüksek, A. Finite Complete Rewriting Systems For Matrix Semigroup Presentations, International Journal of Algebra, 2016; 10: 497-511.
-
Pride S. J. Subgroups of Finite Index in Groups with Finite Complete Rewriting Systems, Proceedings of the Edinburgh Mathematical Society, 2000; 43(1): 177-183.
-
Sims C.C. Computation with Finitely Presentations Groups, Cambridge University Press, Cambridge, 1994.
-
Squier C., Otto F., Kobayashi Y. A finiteness condition for rewriting systems, Theoretical Computer Science, 1994; 131: 271-294.
-
Wang J. Finite Derivation Type for Semigroups and Congruences, Semigroup Forum, 2007; 75: 388-392.
-
Wang J. Finite complete rewriting systems and finite derivation type for small extensions of monoids, Journal of Algebra, 1998; 204: 493-503.
-
Wong K.B., Wong P.C. On finite complete rewriting systems and large subsemigroups, Journal of Algebra, 2010; 345: 242-256.