Derleme
BibTex RIS Kaynak Göster

Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları

Yıl 2023, Cilt: 6 Sayı: 1, 982 - 1005, 10.03.2023
https://doi.org/10.47495/okufbed.1103541

Öz

Antosiyaninler, bitki sekonder metabolitlerinden fenilproponoid yolla sentezlenen fenolik bileşikler sınıfının flavonoid grubuna ait pigmentlerdir. Fenolik bileşikler, diyabet, beyin ve kalp sağlığı, bazı kanserlere karşı yararları olduğu bilinen maddelerdir. Antosiyanin bileşikleri, angiyospermlerin çoğu meyve, sebze ve çiçeğinde somon rengi, pembeden kırmızıya ve menekşeden koyu maviye kadar değişen çoğu rengin ana nedenidir. Antosiyaninler bitkiler için, böcekle tozlaşmayı sağlayan ve tohum dağıtıcılarının ilgisini çeken maddelerdir. Bunun dışında güçlü antioksidan özellikleri vardır. Abiyotik ve biyotik stres etmenlerine karşı koruma sağlarlar. Hücre seviyesinde zincirleme tepkimelere yol açarak hasara neden olan serbest radikalleri üreten oksidasyon sürecini engellemektedir. Sağlık üzerindeki önemli etkileri antosiyaninleri yakın geçmişte ve günümüzde merak edilen, araştırılan bir konu haline getirmiştir. Bu derlemede antosiyaninlerin yapısı, biyosentezi, kullanım alanları geniş kapsamlı olarak sunulmuştur.

Kaynakça

  • Acar, J. (1998). Fenolik bileşikler ve doğal renk maddeleri. Gıda Kimyası, Saldamlı, İ. (ed), Hacettepe Üniversitesi Basımevi, Ankara, s. 435-452.
  • Albert, NW., Davies, KM., Lewis DH., Zhang, H., Montefiori, M., Brendolise, C., Boase, M.R., Ngo, H., Jameson, P.E. & Schwinn, K.E. (2014). A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980.
  • Alipour, B., Rashidkhani, B. & Edalati, S. (2016). Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: a cross-sectional study of Iranian women. Nutrition 32:566–572.
  • Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R. & Walbot, V. (1998). Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135–1149.
  • An, X.H., Tian, Y., Chen, K.Q., Wang, X.F. & Hao, Y.J. (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717.
  • Andersen, Ø.M. & Jordheim, M. (2006) The anthocyanins. In: 2008, Ø.M. & Markham, K.R. (Eds.), Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Boca Raton, pp. 471–553.
  • Andersen, Ø.M., Jordheim, M., Byamukama, R., Mbabazi, A., Ogweng, G., Skaar, I. & Kiremire, B. (2010). Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry 71:1558–63. Andersen, Ø.M. (2012). Personal database on anthocyanins.
  • Anonim, (2013). Fenolik Bileşikler ve Doğal Renk Maddeleri. MEB, Ankara, s.43.
  • Bae, R.N., Kim, K.W., Kim, T.C., Lee & S.K. (2006). Anatomical observations of anthocyanin rich cells in apple skins. HortSci. 41: 733–6.
  • Barros, J., Serrani-Yarce, J.C., Chen, F., Baxter, D., Venables, B.J. & Dixon, R.A. (2016). Role of bifunctional ammonia-lyase in grass cell wall biosynthesi. Nat. Plants. 2: 16050.
  • Bechtold, T. & Mussak, R. (2009). Handbook of Natural Colorants, Wiley Series in Renewable Resources, United Kingdom, 412 pp.
  • Berdeja, M., Nicolas, P., Kappel, C., Dai, Z., Hilbert, G., Peccoux, A. , Lafontaine, M., Ollat, N., Gomès, E. & Delrot, S.(2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Hortic. Res. 2:15012.03
  • Boss, P.K., Davies, C. & Robinson, S.P. (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera l.cv shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066.
  • Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F., & Vianello, A. (2008). Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal Behav. 3, 626– 632.
  • Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev, 56(11): 317- 333.
  • Buer, C., Imin, N., & Djordjevic, M. (2010). Flavonoids: new roles for old molecules. J. Integr. Plant Biol. 52, 98–111. doi: 10.1111/j.1744-7909.2010. 00905.
  • Butelli, E., Titta, L., Giorgio, M., Mock, Matros, A., Peterek, S., Schijlen, E. G. W. M., Hall, R.D., Bovy, A.G., Luo, J. & Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308.
  • Cassidy, A., Mukamal, K.J., Liu, L., Franz, M., Eliassen, A.H. & Rimm, E.B. (2013). High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127:188–196.
  • Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M. E., Rodríguez, J. A. & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review, Food Chemistry, 113, 4, 859–871.
  • Cavalcanti, R.N., Santos, D.T. & Meireles, M.A.A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems - An overview. Food Research International, 44(2), 499-509.
  • Chalker-Scott, L. (1999). Environmental significance of anthocyanin in plant stress responses. Photochem. Photobio., 70: 1-9.
  • Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-Restrepo, A., Ueda, T., Eliceiri, K.W.,Groreword, E. & Otegui, M. S. (2015). Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism, The Plant Cell, Volume 27, Issue 9, September 2015, Pages 2545–2559.
  • Conn, S., Zhang, W. & Franco, C. (2003). Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnol Lett. 25: 835–9.
  • Conn, S., Curtin, C., Bézier, A., Franco, C., & Zhang, W. (2008). Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspen- sion cultures as putative anthocyanin transport proteins. J. Exp. Bot. 59: 3621–3634.
  • Conn, S., Franco, C.M. & Zhang, W. (2010). Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231: 1343–60.
  • Cooray, H.C., Janvilisri, T., Veen, H.W., Hladky, S.B., Barrand, M.A. (2004). Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun, 317(1): 269–275.
  • Cormier, F., Couture, R., Do, C.B., Pham, T.Q. & Tong, V.H. (1997). Properties of anthocyanins from grape cell culture. J. Food Sci. 62: 246–8.
  • Cutler, G.J., Ross, J.A., Harnack, L.J., Jacobs, D.R., Scrafford, C.G., Barraj, L.M., Mink, P.J., Robien, P.J. & Robien K. (2008). Dietary flavonoid intake and risk of cancer in postmenopausal women: The Iowa Women's Health Study. Int J Cancer, 123(3): 664–671.
  • Dai, Z., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J.-P., Bordenave, L., Pieri, P., Hilbert, G., Kappel, C., van Leeuwen, C., Vivin, P., Delrot, S. & Vitic, A. E. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am. J. Enol. Vitic. 62, 413–425.
  • Downey, M., Dokoozlian, N., & Krstic, M. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am. J. Enol. Vitic. 57, 257–268.
  • Espin, J.C., Soler-Rivas, C., Wichers, H. & Garcia-Viguera, C. (2000). Anthocyanin based Natural Colorants: A new Source of Foodstuff, J. Of Agric. And Food Chemisty, 48: 1588-1592p.
  • Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. & Allan, A.C. (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427.
  • Forkmann, G. (1991). Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106: 1–26.
  • Francisco, R.M., Regalado, A., Ageorges, A., Burla, B.J., Bassin, B., Eisenach, C., Zarrouk, O., Vialet, S., Marlin, T., Chaves, M.M., Martinoia, E. & Nagy, R. (2013). ABCC1, an ATP binding cas- sette protein from grape berry, transports anthocyanidin 3-O-Glucosides. Plant Cell 25: 1840–1854.
  • Galbiati, M., Chiusi, A., Peterlongo, P., Mancinelli, A. & Gavazzi, G. (1994). Photoinduction of anthocyanin in maize: A genetic approach. Maydica 1994; 39(2):89-95.
  • Gibellini, L., Pinti, M., Nasi, M., Montagna, J.P., Biasi, S.D., Roat E., Bertoncelli, L., Cooper, E.L. & Cossarizza A. (2011). Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med, Article ID 591356.
  • Gomez, C., Terrier, N., Torregrosa, L., Vialet, S., Fournier-Level, A., Verriès, C., Souquet, J.-M., Mazauric, J.-P., Klein, M., Cheynier, V. & Ageorges, A. (2009). Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 150: 402–415.
  • Gomez, C., Conejero, G., Torregrosa, L., Cheynier, V., Terrier, N. & Ageorges, A. (2011). In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J., 67, 960–970.
  • Gonzalez, A., Zhao, M., Leavitt, J.M. & Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53: 814–827.
  • Goodman, C.D., Casati, P. & Walbot, V. (2004). A multidrug resistance- associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16: 1812–1826.
  • Gorton, H.L. & Vogelmann, T.C. (1996). Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 112: 879-888.
  • Gould, K.S. & Lister, C. (2006). Flavonoid functions in plants. In: Ø. M. wusen & K.R. Markham (Eds), Flavonoids. Chemistry, Biochemistry and Applications. CRC Press, Boca Raton, pp. 397–442.
  • Habran, A., Commisso, M., Helwi, P., Hilbert, G., Negri, S., Ollat, N, Gomès, E., van Leeuwen, C., Guzzo, F. & Delrot, S.(2016). Rootstock/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front. Plant Sci. 7:1134.
  • He, F., Mu, L,., Liang, G.L., Liang, N.N., Pan, Q.H., Wang, J., Reeves, M.J., Duan, C.Q.. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15: 9057-9091.
  • Huang, Y. & Zhou, W. (2019). Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion, Food Chemistry, 278, 357-363.
  • Jamar, G., Estadella. D. & Pisani, L.P. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors, 43: 507-516.
  • Jia, H.F., Chai, Y.M., Li, C.L., Lu, D., Luo, J.J. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157: 188-199.
  • Jiang, Y., Liu C., Yan, D., Wen, X., Liu, Y., Wang, H., Dai, J., Zhang, Y., Liu, Y., Zhou, B. & Ren, X. (2017). MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshe, apple cultivar ’Granny Smith. J Exp Bot 68:1055–1069.
  • Hendry, G.A.F. & Houghton, J.D. (1996). Natural Food Colorants, 2nd edition, Blackie Academic & Professional, London, United Kingdom, 348 p.
  • Holton, T.A. & Cornish, E.C. (1995). Genetics and biochemistry anthocyanin biosynthesis. Plant Cell 7:1071–1083.
  • Horbowicz, M., Kosan, R., Grzesiuk, A. & Debski, H. (2008). Anthocyanins of fruits and vegetables-their occurence analysis and role in human nutrition. VCRB, 68: 5-22.
  • Hsieh, K. & Huang, A.H.C. (2007). Tapetosomes in Brassica ta- petum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19: 582–596.
  • Kähkönen, M.P., Hopia, A.I. ve Heinone, M. (2001). Berry phenolics and their antioxidant activity. J Agric Food Chem 49: 4076-4082.
  • Kähkönen, M.P. & Heinonen, M. (2003). Antioxidant Activity of Anthocyanins and Their Aglycons. Journal of Agricultural and Food Chemistry 2003, 51 (3), 628-633.
  • Keller, M. (2015). The Science of Grapevines, 2nd Edn. London: Academic Press.
  • Kırca A. (2004). Siyah havuç antosiyaninlerinin bazı meyve ürünlerinde ısıl stabilitesi. Ankara, 123s. (Doktora tezi)
  • Keppler, K. & Humpf, H.U. (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic & Medicinal Chemistry Volume 13, Issue 17, 1 September 2005, Pages 5195-5205.
  • Kitamura, S., Shikazono, N., & Tanaka, A. (2004). TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37: 104–114.
  • Koh, J., Xu, Z. & Wicker, L. (2020). Blueberry pectin and increased anthocyanins stability under in vitro digestion, Food Chemistry, 302.
  • Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F. & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry 64(5): 923–933. PMID:14561507.
  • Kovinich, N., Kayanja, G., Chanoca, A., Riedl, K., Otegui, M.S., & Grotewold, E. (2014). Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240: 931–940.
  • Koyama, K., Sadamatsu, K. & Goto-Yamamoto, N. (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10: 367-381.
  • Krick, R., Muehe, Y., Prick, T., Bremer, S., Schlotterhose, P., Eskelinen, E.-L., Millen, J., Goldfarb, D.S. & Thumm, M. (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19: 4492–4505.
  • Li, F. & Vierstra, R.D. (2012). Autophagy: a multifaceted in- tracellular system for bulk and selective recycling. Trends Plant Sci. 17: 526–537.
  • Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J.-M., Debeaujon, I. & Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+- antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19: 2023–2038.
  • Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. & Boase, M.R. (2000). Anthocyanic vacuolar inclusions–their nature and significance in flower colouration. Phytochemistry 55: 327–36.
  • Mateus, N. & de Freitas, V. (2008). Anthocyanins as Food Colorants. In Anthocyanins. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., & Walbot, V. (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375: 397–400.
  • Mazza, G. & Miniati, E. (1993). Anthocyanins in Fruits, Vegetables, and Grains, Boca Raton, FL, CRC Press.
  • Mclellan, M. R., Kime, R.W., Lee, C.Y. & Long, T.M. (1995). Effect of honey as an anti- browning agent in light raisin processing. J. Food Process. Pres. 19(1): 1–8.
  • Meralı, R., Doğan, İ.S. & Kanberoğlu, S.G. (2012). Fonksiyonel Gıda Bileşeni Olarak Antioksidanlar. Iğdır Univ. J. Inst. Sci. & Tech. 2(2): 45-50.
  • Middleton, E.J, Kandaswami, C. & Theoharides, T.C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751.
  • Milbury, P.E. & Kalt, W. (2010). Xenobiotic metabolism and berry flavonoid transport across the blood–brain barrier. J Agric Food Chem 2010, 58, 3950–3956.
  • Müller, O., Sattler, T., Flötenmeyer, M., Schwarz, H., Plattner, H. & Mayer, A. (2000). Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J. Cell Biol. 151: 519–528.
  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114. Newton, D. (1978). pKa values of medicinal compounds in pharmacy practice. Drug Intell. Clin. Pharm. 12: 546–54.
  • Nguyen, C.T., Lim, S., Lee, J.G. & Lee, E.J. (2017). VcBBX, VcMYB21 and VcR2R3 MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit. J Agric Food Chem 65:2066–2073.
  • Noda, K-I. Glover, B.J., Linstead, p. & Martin, C. (1994). Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature, 369: 661-664.
  • Novotny, J.N., Clevidence, B.A. & Kurilich, A.C. (2012). Anthocyanin kinetics are dependent on anthocyanin structure. British Journal of Nutrition , Volume 107 , Issue 4 , 28 February 2012 , pp. 504 – 509.
  • Nozue, M., Kubo, H., Nishimura, M., Katou, A., Hattori, C., Usuda, N., Nagata, T., & Yasuda, H. (1993). Characterization of intra- vacuolar pigmented structures in anthocyanin-containing cells of sweet-potato suspension-cultures. Plant Cell Physiol. 34: 803–808.
  • Nozue, M., Yamada, K., Nakamura, T., Kubo, H., Kondo, M. & Nishimura, M. (1997). Expression of a vacuolar protein (VP24) in anthocyanin-producing cells of sweet potato in suspension culture. Plant Physiol. 115: 1065–72.
  • Nozzolillo, C., Anderson, J. & Warwick, S. (1995). Anthocyanoplasts in the Brassicaceae: Does their presence serve as a chemotaxonomic marker within the family? Polyphenols Actu. 12: 25–6.
  • Oszmianski, J. & C. Y. Lee (1990). Inhibition of polyphenol oxidase activity and browning by honey. J. Agr. Food Chem. 38(10): 1892–1895.
  • Parada, J. & Aguilera, J.M. (2007). Food microstructure affects the bioavailability of several nutrients. J. Food Sci., 72, R21–R32.
  • de Pascual-Teresa, S. & Sanchez-Ballesta, M.T. (2008). Anthocyanins: From plant to health. Phytochem. Rev. 7: 281–299.
  • Pecket, R.C. & Small, C.J. (1980). Occurrence, location and de- velopment of anthocyanoplasts. Phytochemistry 19: 2571–2576.
  • Pourcel, L., Irani, N.G., Lu, Y., Riedl, K., Schwartz, S. & Grotewold, E. (2010). The formation of Anthocyanic Vacuolar In- clusions in Arabidopsis thaliana and implications for the seques- tration of anthocyanin pigments. Mol. Plant 3: 78–90.
  • Poustka, F., Irani, N.G., Feller, A., Lu, Y., Pourcel, L., Frame, K. & Grotewold, E. (2007). A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 145: 1323–1335.
  • Prior, R.L. & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Pages 1014-1028.
  • Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. & Mollon, J.D.(2001). Fruits, foliage and the evolution of primate colour vision. Phil. Trans. R. Soc.Lond. B 38, 3321–3327.
  • Rice-Evans, C.A., Miller, N.J. & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20(7): 933–956. PMID:8743980.
  • Rio Senegade, S., Soto Vázquez, E. & Díaz Losada, E. (2008). Influence of ripeness grade on accumulation and extractability of grape skin anthocyanins in different cultivars. J. Food Compos. Anal. 21, 599–607.
  • Rudell, D.R., Fellman, J.K. & Mattheis, J.P. (2005). Preharvest application of methyl jasmonate to'Fuji'apples enhances red coloration and affects fruit size, splitting, and bitter pit incidence. HortScience 40: 1760-1762.
  • Sancho, R. A. S. & Pastore, G. M. (2012). Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International, 46(1):, 378–386.
  • Schaart, J.G., Dubos, C., De La Fuente, R., I., van Houwelingen, A.M.M.L., de Vos, R.C.H., Honker, H.H., Xu, W., Routaboul, J.M., Lepiniec, L. & Bovy, A.G. (2013). Identification and characterization of MYB-bHLH-WD40 regu- latory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197: 454–467.
  • Schwinn, K.E. & Davies, K.M. (2004). Flavonoids. In: Davies, K.M. (Ed.), Plant Pigments and their Manipulation. Annual Plant Reviews, Volume 14. Blackwell Publishing, Oxford, pp. 92–149.
  • Selamoglu, Z. (2017). Polyphenolic Compounds in Human Health with Pharmacological Properties. J Tradit Med Clin Natur, 6(4): e 137.
  • Selma, M.V., Espin, J.C. & Tomas-Barberan, F.A. (2009). Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem, 57(15): 6485-6501.
  • Small, C.J. & Pecket, R.C. (1982). The ultrastructure of antho- cyanoplasts in red-cabbage. Planta 154: 97–99.
  • Snyder, B.A. & Nicholson, R.L. (1990). Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248: 1637–9.
  • Sun, Y., Li, H. & Huang, J.-R. (2012). Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol. Plant 5: 387–400.
  • Takos, A.M., Jaffé, F.W., Jacob, S.R., Bogs, J., Robinson, S.P. & Walker, A.R. (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232.
  • Tanaka, Y., Sasaki, N. & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749. doi: 10.1111/j. 1365-313X.2008.03447.
  • Tanaka, S., Yamamoto, K., Yamada, K., Furuya, K. & Uyeno, Y. (2016). Relationship of Enhanced Butyrate Production by Colonic Butyrate- Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L. Appl Environ Microbiol, 82(9): 2693-2699.
  • Taylor, L.P. & Grotewold, E. (2005). Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8:317-323.
  • Teixeira, L.L., Costa, G.R., Dörr, F.A., Ong, T.P., Pinto, E. & Lajolo, F.M. (2017). Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food Funct, 8(6): 2266-2274.
  • Thiranusornkij, L.,Thamnarathip, P., Chandrachai,A., Kuakpetoon, D. & Adisakwattana, S. (2019). Comparative studies on physicochemical properties, starch hydrolysis, predicted glycemic index of Hom Mali rice and Riceberry rice flour and their applications in bread. Food Chemistry Volume 283, 15 June 2019, Pages 224-231.
  • Toguri, T., Umemoto, N., Kobayashi, O. & Ohtani, T. (1993). Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA. Plant Mol Biol 1993; 23(5):933-946.
  • Tsai, P. J., Hsieh, Y.Y. & Huang T.C. (2004). Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using O-17 NMR. J. Agr. Food Chem. 52(10): 3097–3099.
  • Uttenweiler, A., Schwarz, H., Neumann, H. & Mayer, A. (2007). The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol. Biol. Cell 18: 166–175.
  • Uyeno, Y., Katayama, S. & Nakamura, S. (2014). Changes in mouse gastrointestinal microbial ecology with ingestion of kale. Benef Microbes, 5(3): 345-349.
  • Viljanen, K., Kivikari, R., Heinonen & M. (2004). Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. J Agric Food Chem 52: 1104-1111.
  • Wallace, T.C. & Guisti, M.M. (2009). Anthocyanins in Healt and Disease, USA.
  • Wallace, T.C. (2011). Advances in Nutrition, Volume 2, Issue 1, January 2011, Pages 1–7.
  • Wang, H., Cao, G., & Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food. Chem. 45(2): 304–309.
  • Wang, L.S. & Stoner, G.D. (2008). Anthocyanins and their role in cancer prevention. Cancer Lett., 269, 281–290.
  • Wang, L., Lee, I.M., Zhang, S.M., Blumberg, J.B., Buring, J.E., Sesso, H.D. (2009). Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr, 89(3): 905–912.
  • Weber F., Boch K. & Schieber A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from Blackberry. Elsevıer Volume 75, January 2017, Pages 72-77.
  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.
  • Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5: 218–223.
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. & Prior, R.L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 54(11): 4069–4075. doi:10.1021/jf060300l. PMID:16719536.
  • Xie, X.B., Li, S. & Zhang, R.F. (2012). The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit coloura- tion in response to low temperature in apples. Plant Cell Environ 35:1884–1897.
  • Xie, R., Zheng, L., He, S., Zheng, Y. & Deng L. (2014). Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation. Afr J Biotechnol 10: 19890-19897.
  • Xie, L., Su, H., Sun, C., Zheng, X. & Chen, W. (2017). Recent advences in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms, Trends Food Sci Technol, 72(2018): 13-24.
  • Xu, H., Wang, N., Liu, J. et al. (2017). The molecular mechanism under- lying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol 94:149–165.
  • Xu, W., Shioiri, H., Kojima, M. & Nozue, M. (2001). Primary structure and expression of a 24-kD vacuolar protein (VP24) pre- cursor in anthocyanin-producing cells of sweet potato in suspen- sion culture. Plant Physiol. 125: 447–455.
  • Yetim, H. (2011). Siyah havuç ve kırmızı lahanadan ekstrakte edilen antosiyanin bazlı renk maddelerinin biyolojik özelliklerinin belirlenmesi ve bazı gıda maddelerinde renklendirici olarak kullanımı Araştırma Raporu ; Proje No: FBA- 08 768.
  • Yoshida, K., Kondo, T., Okazaki, Y. & Katou, K. (1995). Cause of blue petal colour. Nature 373: 291
  • Zand, R., Jenkıns, D.J.A. & Dıamandıs, E.P. (2002). Flavonoids and steroid hormone dependent cancers. J Chromatogr B, 777(1-2): 219-232.
  • Zhang, H., Wang, L.., Deroles, S., Bennett, R. & Davies, K. (2006). New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol. 6: 29.
  • Zhao, X., Zhang, S. S., Zhang, X. K., He, F. & Duan, C. Q. (2020). An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grapepomace, Food Chemistry, 310.

Structure of Anthocyanins, Biosynthesis in Cell, Activities and Usage Areas

Yıl 2023, Cilt: 6 Sayı: 1, 982 - 1005, 10.03.2023
https://doi.org/10.47495/okufbed.1103541

Öz

Anthocyanins are pigments belonging to the flavonoid group of the class of phenolic compounds synthesized from plant secondary metabolites by the phenylproponoid route. Phenolic compounds are substances known to have benefits against diabetes, brain and heart health, and some cancers. Anthocyanin compounds are the main cause of most colors in most fruits, vegetables and flowers of angiosperms, ranging from salmon to pink to red and violet to deep blue. Anthocyanins are substances for plants that provide insect pollination and attract the attention of seed dispersers. Apart from that, it has strong antioxidant properties. They provide protection against abiotic and biotic stressors. It inhibits the oxidation process that produces free radicals that cause chain reactions at the cell level and cause damage. Its important effects on health have made anthocyanins a curious and researched topic in the recent past and today. In this review, the structure, biosynthesis and usage areas of anthocyanins are presented in a comprehensive manner.

Kaynakça

  • Acar, J. (1998). Fenolik bileşikler ve doğal renk maddeleri. Gıda Kimyası, Saldamlı, İ. (ed), Hacettepe Üniversitesi Basımevi, Ankara, s. 435-452.
  • Albert, NW., Davies, KM., Lewis DH., Zhang, H., Montefiori, M., Brendolise, C., Boase, M.R., Ngo, H., Jameson, P.E. & Schwinn, K.E. (2014). A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980.
  • Alipour, B., Rashidkhani, B. & Edalati, S. (2016). Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: a cross-sectional study of Iranian women. Nutrition 32:566–572.
  • Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R. & Walbot, V. (1998). Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135–1149.
  • An, X.H., Tian, Y., Chen, K.Q., Wang, X.F. & Hao, Y.J. (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717.
  • Andersen, Ø.M. & Jordheim, M. (2006) The anthocyanins. In: 2008, Ø.M. & Markham, K.R. (Eds.), Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Boca Raton, pp. 471–553.
  • Andersen, Ø.M., Jordheim, M., Byamukama, R., Mbabazi, A., Ogweng, G., Skaar, I. & Kiremire, B. (2010). Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry 71:1558–63. Andersen, Ø.M. (2012). Personal database on anthocyanins.
  • Anonim, (2013). Fenolik Bileşikler ve Doğal Renk Maddeleri. MEB, Ankara, s.43.
  • Bae, R.N., Kim, K.W., Kim, T.C., Lee & S.K. (2006). Anatomical observations of anthocyanin rich cells in apple skins. HortSci. 41: 733–6.
  • Barros, J., Serrani-Yarce, J.C., Chen, F., Baxter, D., Venables, B.J. & Dixon, R.A. (2016). Role of bifunctional ammonia-lyase in grass cell wall biosynthesi. Nat. Plants. 2: 16050.
  • Bechtold, T. & Mussak, R. (2009). Handbook of Natural Colorants, Wiley Series in Renewable Resources, United Kingdom, 412 pp.
  • Berdeja, M., Nicolas, P., Kappel, C., Dai, Z., Hilbert, G., Peccoux, A. , Lafontaine, M., Ollat, N., Gomès, E. & Delrot, S.(2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Hortic. Res. 2:15012.03
  • Boss, P.K., Davies, C. & Robinson, S.P. (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera l.cv shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066.
  • Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F., & Vianello, A. (2008). Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal Behav. 3, 626– 632.
  • Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev, 56(11): 317- 333.
  • Buer, C., Imin, N., & Djordjevic, M. (2010). Flavonoids: new roles for old molecules. J. Integr. Plant Biol. 52, 98–111. doi: 10.1111/j.1744-7909.2010. 00905.
  • Butelli, E., Titta, L., Giorgio, M., Mock, Matros, A., Peterek, S., Schijlen, E. G. W. M., Hall, R.D., Bovy, A.G., Luo, J. & Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308.
  • Cassidy, A., Mukamal, K.J., Liu, L., Franz, M., Eliassen, A.H. & Rimm, E.B. (2013). High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127:188–196.
  • Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M. E., Rodríguez, J. A. & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review, Food Chemistry, 113, 4, 859–871.
  • Cavalcanti, R.N., Santos, D.T. & Meireles, M.A.A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems - An overview. Food Research International, 44(2), 499-509.
  • Chalker-Scott, L. (1999). Environmental significance of anthocyanin in plant stress responses. Photochem. Photobio., 70: 1-9.
  • Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-Restrepo, A., Ueda, T., Eliceiri, K.W.,Groreword, E. & Otegui, M. S. (2015). Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism, The Plant Cell, Volume 27, Issue 9, September 2015, Pages 2545–2559.
  • Conn, S., Zhang, W. & Franco, C. (2003). Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnol Lett. 25: 835–9.
  • Conn, S., Curtin, C., Bézier, A., Franco, C., & Zhang, W. (2008). Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspen- sion cultures as putative anthocyanin transport proteins. J. Exp. Bot. 59: 3621–3634.
  • Conn, S., Franco, C.M. & Zhang, W. (2010). Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231: 1343–60.
  • Cooray, H.C., Janvilisri, T., Veen, H.W., Hladky, S.B., Barrand, M.A. (2004). Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun, 317(1): 269–275.
  • Cormier, F., Couture, R., Do, C.B., Pham, T.Q. & Tong, V.H. (1997). Properties of anthocyanins from grape cell culture. J. Food Sci. 62: 246–8.
  • Cutler, G.J., Ross, J.A., Harnack, L.J., Jacobs, D.R., Scrafford, C.G., Barraj, L.M., Mink, P.J., Robien, P.J. & Robien K. (2008). Dietary flavonoid intake and risk of cancer in postmenopausal women: The Iowa Women's Health Study. Int J Cancer, 123(3): 664–671.
  • Dai, Z., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J.-P., Bordenave, L., Pieri, P., Hilbert, G., Kappel, C., van Leeuwen, C., Vivin, P., Delrot, S. & Vitic, A. E. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am. J. Enol. Vitic. 62, 413–425.
  • Downey, M., Dokoozlian, N., & Krstic, M. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am. J. Enol. Vitic. 57, 257–268.
  • Espin, J.C., Soler-Rivas, C., Wichers, H. & Garcia-Viguera, C. (2000). Anthocyanin based Natural Colorants: A new Source of Foodstuff, J. Of Agric. And Food Chemisty, 48: 1588-1592p.
  • Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. & Allan, A.C. (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427.
  • Forkmann, G. (1991). Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106: 1–26.
  • Francisco, R.M., Regalado, A., Ageorges, A., Burla, B.J., Bassin, B., Eisenach, C., Zarrouk, O., Vialet, S., Marlin, T., Chaves, M.M., Martinoia, E. & Nagy, R. (2013). ABCC1, an ATP binding cas- sette protein from grape berry, transports anthocyanidin 3-O-Glucosides. Plant Cell 25: 1840–1854.
  • Galbiati, M., Chiusi, A., Peterlongo, P., Mancinelli, A. & Gavazzi, G. (1994). Photoinduction of anthocyanin in maize: A genetic approach. Maydica 1994; 39(2):89-95.
  • Gibellini, L., Pinti, M., Nasi, M., Montagna, J.P., Biasi, S.D., Roat E., Bertoncelli, L., Cooper, E.L. & Cossarizza A. (2011). Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med, Article ID 591356.
  • Gomez, C., Terrier, N., Torregrosa, L., Vialet, S., Fournier-Level, A., Verriès, C., Souquet, J.-M., Mazauric, J.-P., Klein, M., Cheynier, V. & Ageorges, A. (2009). Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 150: 402–415.
  • Gomez, C., Conejero, G., Torregrosa, L., Cheynier, V., Terrier, N. & Ageorges, A. (2011). In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J., 67, 960–970.
  • Gonzalez, A., Zhao, M., Leavitt, J.M. & Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53: 814–827.
  • Goodman, C.D., Casati, P. & Walbot, V. (2004). A multidrug resistance- associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16: 1812–1826.
  • Gorton, H.L. & Vogelmann, T.C. (1996). Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 112: 879-888.
  • Gould, K.S. & Lister, C. (2006). Flavonoid functions in plants. In: Ø. M. wusen & K.R. Markham (Eds), Flavonoids. Chemistry, Biochemistry and Applications. CRC Press, Boca Raton, pp. 397–442.
  • Habran, A., Commisso, M., Helwi, P., Hilbert, G., Negri, S., Ollat, N, Gomès, E., van Leeuwen, C., Guzzo, F. & Delrot, S.(2016). Rootstock/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front. Plant Sci. 7:1134.
  • He, F., Mu, L,., Liang, G.L., Liang, N.N., Pan, Q.H., Wang, J., Reeves, M.J., Duan, C.Q.. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15: 9057-9091.
  • Huang, Y. & Zhou, W. (2019). Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion, Food Chemistry, 278, 357-363.
  • Jamar, G., Estadella. D. & Pisani, L.P. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors, 43: 507-516.
  • Jia, H.F., Chai, Y.M., Li, C.L., Lu, D., Luo, J.J. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157: 188-199.
  • Jiang, Y., Liu C., Yan, D., Wen, X., Liu, Y., Wang, H., Dai, J., Zhang, Y., Liu, Y., Zhou, B. & Ren, X. (2017). MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshe, apple cultivar ’Granny Smith. J Exp Bot 68:1055–1069.
  • Hendry, G.A.F. & Houghton, J.D. (1996). Natural Food Colorants, 2nd edition, Blackie Academic & Professional, London, United Kingdom, 348 p.
  • Holton, T.A. & Cornish, E.C. (1995). Genetics and biochemistry anthocyanin biosynthesis. Plant Cell 7:1071–1083.
  • Horbowicz, M., Kosan, R., Grzesiuk, A. & Debski, H. (2008). Anthocyanins of fruits and vegetables-their occurence analysis and role in human nutrition. VCRB, 68: 5-22.
  • Hsieh, K. & Huang, A.H.C. (2007). Tapetosomes in Brassica ta- petum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19: 582–596.
  • Kähkönen, M.P., Hopia, A.I. ve Heinone, M. (2001). Berry phenolics and their antioxidant activity. J Agric Food Chem 49: 4076-4082.
  • Kähkönen, M.P. & Heinonen, M. (2003). Antioxidant Activity of Anthocyanins and Their Aglycons. Journal of Agricultural and Food Chemistry 2003, 51 (3), 628-633.
  • Keller, M. (2015). The Science of Grapevines, 2nd Edn. London: Academic Press.
  • Kırca A. (2004). Siyah havuç antosiyaninlerinin bazı meyve ürünlerinde ısıl stabilitesi. Ankara, 123s. (Doktora tezi)
  • Keppler, K. & Humpf, H.U. (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic & Medicinal Chemistry Volume 13, Issue 17, 1 September 2005, Pages 5195-5205.
  • Kitamura, S., Shikazono, N., & Tanaka, A. (2004). TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37: 104–114.
  • Koh, J., Xu, Z. & Wicker, L. (2020). Blueberry pectin and increased anthocyanins stability under in vitro digestion, Food Chemistry, 302.
  • Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F. & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry 64(5): 923–933. PMID:14561507.
  • Kovinich, N., Kayanja, G., Chanoca, A., Riedl, K., Otegui, M.S., & Grotewold, E. (2014). Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240: 931–940.
  • Koyama, K., Sadamatsu, K. & Goto-Yamamoto, N. (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10: 367-381.
  • Krick, R., Muehe, Y., Prick, T., Bremer, S., Schlotterhose, P., Eskelinen, E.-L., Millen, J., Goldfarb, D.S. & Thumm, M. (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19: 4492–4505.
  • Li, F. & Vierstra, R.D. (2012). Autophagy: a multifaceted in- tracellular system for bulk and selective recycling. Trends Plant Sci. 17: 526–537.
  • Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J.-M., Debeaujon, I. & Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+- antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19: 2023–2038.
  • Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. & Boase, M.R. (2000). Anthocyanic vacuolar inclusions–their nature and significance in flower colouration. Phytochemistry 55: 327–36.
  • Mateus, N. & de Freitas, V. (2008). Anthocyanins as Food Colorants. In Anthocyanins. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., & Walbot, V. (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375: 397–400.
  • Mazza, G. & Miniati, E. (1993). Anthocyanins in Fruits, Vegetables, and Grains, Boca Raton, FL, CRC Press.
  • Mclellan, M. R., Kime, R.W., Lee, C.Y. & Long, T.M. (1995). Effect of honey as an anti- browning agent in light raisin processing. J. Food Process. Pres. 19(1): 1–8.
  • Meralı, R., Doğan, İ.S. & Kanberoğlu, S.G. (2012). Fonksiyonel Gıda Bileşeni Olarak Antioksidanlar. Iğdır Univ. J. Inst. Sci. & Tech. 2(2): 45-50.
  • Middleton, E.J, Kandaswami, C. & Theoharides, T.C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751.
  • Milbury, P.E. & Kalt, W. (2010). Xenobiotic metabolism and berry flavonoid transport across the blood–brain barrier. J Agric Food Chem 2010, 58, 3950–3956.
  • Müller, O., Sattler, T., Flötenmeyer, M., Schwarz, H., Plattner, H. & Mayer, A. (2000). Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J. Cell Biol. 151: 519–528.
  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114. Newton, D. (1978). pKa values of medicinal compounds in pharmacy practice. Drug Intell. Clin. Pharm. 12: 546–54.
  • Nguyen, C.T., Lim, S., Lee, J.G. & Lee, E.J. (2017). VcBBX, VcMYB21 and VcR2R3 MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit. J Agric Food Chem 65:2066–2073.
  • Noda, K-I. Glover, B.J., Linstead, p. & Martin, C. (1994). Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature, 369: 661-664.
  • Novotny, J.N., Clevidence, B.A. & Kurilich, A.C. (2012). Anthocyanin kinetics are dependent on anthocyanin structure. British Journal of Nutrition , Volume 107 , Issue 4 , 28 February 2012 , pp. 504 – 509.
  • Nozue, M., Kubo, H., Nishimura, M., Katou, A., Hattori, C., Usuda, N., Nagata, T., & Yasuda, H. (1993). Characterization of intra- vacuolar pigmented structures in anthocyanin-containing cells of sweet-potato suspension-cultures. Plant Cell Physiol. 34: 803–808.
  • Nozue, M., Yamada, K., Nakamura, T., Kubo, H., Kondo, M. & Nishimura, M. (1997). Expression of a vacuolar protein (VP24) in anthocyanin-producing cells of sweet potato in suspension culture. Plant Physiol. 115: 1065–72.
  • Nozzolillo, C., Anderson, J. & Warwick, S. (1995). Anthocyanoplasts in the Brassicaceae: Does their presence serve as a chemotaxonomic marker within the family? Polyphenols Actu. 12: 25–6.
  • Oszmianski, J. & C. Y. Lee (1990). Inhibition of polyphenol oxidase activity and browning by honey. J. Agr. Food Chem. 38(10): 1892–1895.
  • Parada, J. & Aguilera, J.M. (2007). Food microstructure affects the bioavailability of several nutrients. J. Food Sci., 72, R21–R32.
  • de Pascual-Teresa, S. & Sanchez-Ballesta, M.T. (2008). Anthocyanins: From plant to health. Phytochem. Rev. 7: 281–299.
  • Pecket, R.C. & Small, C.J. (1980). Occurrence, location and de- velopment of anthocyanoplasts. Phytochemistry 19: 2571–2576.
  • Pourcel, L., Irani, N.G., Lu, Y., Riedl, K., Schwartz, S. & Grotewold, E. (2010). The formation of Anthocyanic Vacuolar In- clusions in Arabidopsis thaliana and implications for the seques- tration of anthocyanin pigments. Mol. Plant 3: 78–90.
  • Poustka, F., Irani, N.G., Feller, A., Lu, Y., Pourcel, L., Frame, K. & Grotewold, E. (2007). A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 145: 1323–1335.
  • Prior, R.L. & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Pages 1014-1028.
  • Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. & Mollon, J.D.(2001). Fruits, foliage and the evolution of primate colour vision. Phil. Trans. R. Soc.Lond. B 38, 3321–3327.
  • Rice-Evans, C.A., Miller, N.J. & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20(7): 933–956. PMID:8743980.
  • Rio Senegade, S., Soto Vázquez, E. & Díaz Losada, E. (2008). Influence of ripeness grade on accumulation and extractability of grape skin anthocyanins in different cultivars. J. Food Compos. Anal. 21, 599–607.
  • Rudell, D.R., Fellman, J.K. & Mattheis, J.P. (2005). Preharvest application of methyl jasmonate to'Fuji'apples enhances red coloration and affects fruit size, splitting, and bitter pit incidence. HortScience 40: 1760-1762.
  • Sancho, R. A. S. & Pastore, G. M. (2012). Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International, 46(1):, 378–386.
  • Schaart, J.G., Dubos, C., De La Fuente, R., I., van Houwelingen, A.M.M.L., de Vos, R.C.H., Honker, H.H., Xu, W., Routaboul, J.M., Lepiniec, L. & Bovy, A.G. (2013). Identification and characterization of MYB-bHLH-WD40 regu- latory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197: 454–467.
  • Schwinn, K.E. & Davies, K.M. (2004). Flavonoids. In: Davies, K.M. (Ed.), Plant Pigments and their Manipulation. Annual Plant Reviews, Volume 14. Blackwell Publishing, Oxford, pp. 92–149.
  • Selamoglu, Z. (2017). Polyphenolic Compounds in Human Health with Pharmacological Properties. J Tradit Med Clin Natur, 6(4): e 137.
  • Selma, M.V., Espin, J.C. & Tomas-Barberan, F.A. (2009). Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem, 57(15): 6485-6501.
  • Small, C.J. & Pecket, R.C. (1982). The ultrastructure of antho- cyanoplasts in red-cabbage. Planta 154: 97–99.
  • Snyder, B.A. & Nicholson, R.L. (1990). Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248: 1637–9.
  • Sun, Y., Li, H. & Huang, J.-R. (2012). Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol. Plant 5: 387–400.
  • Takos, A.M., Jaffé, F.W., Jacob, S.R., Bogs, J., Robinson, S.P. & Walker, A.R. (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232.
  • Tanaka, Y., Sasaki, N. & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749. doi: 10.1111/j. 1365-313X.2008.03447.
  • Tanaka, S., Yamamoto, K., Yamada, K., Furuya, K. & Uyeno, Y. (2016). Relationship of Enhanced Butyrate Production by Colonic Butyrate- Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L. Appl Environ Microbiol, 82(9): 2693-2699.
  • Taylor, L.P. & Grotewold, E. (2005). Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8:317-323.
  • Teixeira, L.L., Costa, G.R., Dörr, F.A., Ong, T.P., Pinto, E. & Lajolo, F.M. (2017). Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food Funct, 8(6): 2266-2274.
  • Thiranusornkij, L.,Thamnarathip, P., Chandrachai,A., Kuakpetoon, D. & Adisakwattana, S. (2019). Comparative studies on physicochemical properties, starch hydrolysis, predicted glycemic index of Hom Mali rice and Riceberry rice flour and their applications in bread. Food Chemistry Volume 283, 15 June 2019, Pages 224-231.
  • Toguri, T., Umemoto, N., Kobayashi, O. & Ohtani, T. (1993). Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA. Plant Mol Biol 1993; 23(5):933-946.
  • Tsai, P. J., Hsieh, Y.Y. & Huang T.C. (2004). Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using O-17 NMR. J. Agr. Food Chem. 52(10): 3097–3099.
  • Uttenweiler, A., Schwarz, H., Neumann, H. & Mayer, A. (2007). The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol. Biol. Cell 18: 166–175.
  • Uyeno, Y., Katayama, S. & Nakamura, S. (2014). Changes in mouse gastrointestinal microbial ecology with ingestion of kale. Benef Microbes, 5(3): 345-349.
  • Viljanen, K., Kivikari, R., Heinonen & M. (2004). Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. J Agric Food Chem 52: 1104-1111.
  • Wallace, T.C. & Guisti, M.M. (2009). Anthocyanins in Healt and Disease, USA.
  • Wallace, T.C. (2011). Advances in Nutrition, Volume 2, Issue 1, January 2011, Pages 1–7.
  • Wang, H., Cao, G., & Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food. Chem. 45(2): 304–309.
  • Wang, L.S. & Stoner, G.D. (2008). Anthocyanins and their role in cancer prevention. Cancer Lett., 269, 281–290.
  • Wang, L., Lee, I.M., Zhang, S.M., Blumberg, J.B., Buring, J.E., Sesso, H.D. (2009). Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr, 89(3): 905–912.
  • Weber F., Boch K. & Schieber A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from Blackberry. Elsevıer Volume 75, January 2017, Pages 72-77.
  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.
  • Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5: 218–223.
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. & Prior, R.L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 54(11): 4069–4075. doi:10.1021/jf060300l. PMID:16719536.
  • Xie, X.B., Li, S. & Zhang, R.F. (2012). The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit coloura- tion in response to low temperature in apples. Plant Cell Environ 35:1884–1897.
  • Xie, R., Zheng, L., He, S., Zheng, Y. & Deng L. (2014). Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation. Afr J Biotechnol 10: 19890-19897.
  • Xie, L., Su, H., Sun, C., Zheng, X. & Chen, W. (2017). Recent advences in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms, Trends Food Sci Technol, 72(2018): 13-24.
  • Xu, H., Wang, N., Liu, J. et al. (2017). The molecular mechanism under- lying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol 94:149–165.
  • Xu, W., Shioiri, H., Kojima, M. & Nozue, M. (2001). Primary structure and expression of a 24-kD vacuolar protein (VP24) pre- cursor in anthocyanin-producing cells of sweet potato in suspen- sion culture. Plant Physiol. 125: 447–455.
  • Yetim, H. (2011). Siyah havuç ve kırmızı lahanadan ekstrakte edilen antosiyanin bazlı renk maddelerinin biyolojik özelliklerinin belirlenmesi ve bazı gıda maddelerinde renklendirici olarak kullanımı Araştırma Raporu ; Proje No: FBA- 08 768.
  • Yoshida, K., Kondo, T., Okazaki, Y. & Katou, K. (1995). Cause of blue petal colour. Nature 373: 291
  • Zand, R., Jenkıns, D.J.A. & Dıamandıs, E.P. (2002). Flavonoids and steroid hormone dependent cancers. J Chromatogr B, 777(1-2): 219-232.
  • Zhang, H., Wang, L.., Deroles, S., Bennett, R. & Davies, K. (2006). New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol. 6: 29.
  • Zhao, X., Zhang, S. S., Zhang, X. K., He, F. & Duan, C. Q. (2020). An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grapepomace, Food Chemistry, 310.
Toplam 129 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Derlemeler (REVIEWS)
Yazarlar

Elif Onan 0000-0003-1413-2234

Hatice Çölgeçen 0000-0001-8246-4279

Yayımlanma Tarihi 10 Mart 2023
Gönderilme Tarihi 14 Nisan 2022
Kabul Tarihi 8 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Onan, E., & Çölgeçen, H. (2023). Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 982-1005. https://doi.org/10.47495/okufbed.1103541
AMA Onan E, Çölgeçen H. Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Mart 2023;6(1):982-1005. doi:10.47495/okufbed.1103541
Chicago Onan, Elif, ve Hatice Çölgeçen. “Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri Ve Kullanım Alanları”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, sy. 1 (Mart 2023): 982-1005. https://doi.org/10.47495/okufbed.1103541.
EndNote Onan E, Çölgeçen H (01 Mart 2023) Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 982–1005.
IEEE E. Onan ve H. Çölgeçen, “Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 6, sy. 1, ss. 982–1005, 2023, doi: 10.47495/okufbed.1103541.
ISNAD Onan, Elif - Çölgeçen, Hatice. “Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri Ve Kullanım Alanları”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (Mart 2023), 982-1005. https://doi.org/10.47495/okufbed.1103541.
JAMA Onan E, Çölgeçen H. Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6:982–1005.
MLA Onan, Elif ve Hatice Çölgeçen. “Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri Ve Kullanım Alanları”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 1, 2023, ss. 982-1005, doi:10.47495/okufbed.1103541.
Vancouver Onan E, Çölgeçen H. Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6(1):982-1005.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.